Features

- N channel
- Enhancement mode
- Avalanche rated
- Logic Level
- $\mathrm{d} v / \mathrm{d} t$ rated
- $175{ }^{\circ} \mathrm{C}$ operating temperature

Product Summary

Drain source voltage	V_{DS}	55	V
Drain-Source on-state resistance	$R_{\mathrm{DS}(\mathrm{on})}$	0.015	Ω
Continuous drain current	I_{D}	47	A

Type	Package	Ordering Code	Packaging
BUZ102SL	P-TO220-3-1	Q67040-S4010-A2	Tube
BUZ102SL E3045A	P-TO263-3-2	Q67040-S4010-A6	Tape and Reel
BUZ102SL E3045	P-TO263-3-2	Q67040-S4010-A5	Tube

Pin 1	Pin 2	Pin 3
G	D	S

Maximum Ratings, at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Value	Unit
Continuous drain current $\begin{aligned} & T_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$	$I_{\text {D }}$	$\begin{aligned} & 47 \\ & 33 \end{aligned}$	A
Pulsed drain current $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$	/Dpulse	188	
Avalanche energy, single pulse $I_{\mathrm{D}}=47 \mathrm{~A}, V_{\mathrm{DD}}=25 \mathrm{~V}, R_{\mathrm{GS}}=25 \Omega$	$E_{\text {AS }}$	245	mJ
Avalanche energy, periodic limited by $T_{\text {jmax }}$	$E_{\text {AR }}$	12	
Reverse diode $\mathrm{d} v / \mathrm{d} t$ $\begin{aligned} & I_{\mathrm{S}}=47 \mathrm{~A}, V_{\mathrm{DS}}=40 \mathrm{~V}, \mathrm{~d} i / \mathrm{d} t=200 \mathrm{~A} / \mu \mathrm{s}, \\ & T_{\text {jmax }}=175^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{d} v / \mathrm{d} t$	6	kV/ $\mu \mathrm{s}$
Gate source voltage	$V_{G S}$	-20	V
Power dissipation $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$P_{\text {tot }}$	120	W
Operating and storage temperature	$T_{\mathrm{j}}, T_{\text {stg }}$	$-55 \ldots+175$	C
IEC climatic category; DIN IEC 68-1		55/175/56	

Thermal Characteristics

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Characteristics	$R_{\text {thJC }}$	-	-	1.25	K/W
Thermal resistance, junction - case	$R_{\text {thJA }}$	-	-	62	
Thermal resistance, junction - ambient, leded	$R_{\text {thJA }}$				
SMD version, device on PCB:		-	-	62	
@ min. footprint		-	-	40	
@ $6 \mathrm{~cm}^{2}$ cooling area ${ }^{1}$)					

Electrical Characteristics, at $T_{\mathrm{i}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Static Characteristics					
Drain- source breakdown voltage $V_{\mathrm{GS}}=0 \mathrm{~V}, I_{\mathrm{D}}=0.25 \mathrm{~mA}$	$V_{(\mathrm{BR}) \mathrm{DSS}}$	55	-	-	V
Gate threshold voltage, $V_{G S}=V_{D S}$ b = $90 \mu \mathrm{~A}$	$V_{\mathrm{GS}}(\mathrm{th})$	1.2	1.6	2	
Zero gate voltage drain current $\begin{aligned} & V_{\mathrm{DS}}=50 \mathrm{~V}, V_{\mathrm{GS}}=0 \mathrm{~V}, T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & V_{\mathrm{DS}}=50 \mathrm{~V}, V_{\mathrm{GS}}=0 \mathrm{~V}, T_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	IDSS	-	0.1	$\begin{gathered} 1 \\ 100 \end{gathered}$	$\mu \mathrm{A}$
Gate-source leakage current $V_{\mathrm{GS}}=20 \mathrm{~V}, V_{\mathrm{DS}}=0 \mathrm{~V}$	$I_{\text {GSS }}$	-	10	100	nA
Drain-Source on-state resistance $\begin{aligned} & V_{\mathrm{GS}}=4.5 \mathrm{~V}, I_{\mathrm{D}}=33 \mathrm{~A} \\ & V_{\mathrm{GS}}=10 \mathrm{~V}, I_{\mathrm{D}}=33 \mathrm{~A} \end{aligned}$	$R_{\text {DS(on) }}$	-	0.021 0.0135	0.024 0.015	Ω

1 Device on $40 \mathrm{~mm} * 40 \mathrm{~mm} * 1.5 \mathrm{~mm}$ epoxy PCB FR4 with 6 cm 2 (one layer, $70 \mu \mathrm{~m}$ thick) copper area for drain connection. PCB is vertical without blown air.

Electrical Characteristics, at $T_{i}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Dynamic Characteristics					
Transconductance $V_{\mathrm{DS}} \geq 2^{*} I_{\mathrm{D}}{ }^{\star} R_{\mathrm{DS}}$ (on)max,$I_{\mathrm{D}}=33 \mathrm{~A}$	$g_{\text {fs }}$	10	40	-	S
Input capacitance $V_{\mathrm{GS}}=0 \mathrm{~V}, V_{\mathrm{DS}}=25 \mathrm{~V}, f=1 \mathrm{MHz}$	$C_{\text {iss }}$	-	1380	1730	pF
Output capacitance $V_{\mathrm{GS}}=0 \mathrm{~V}, V_{\mathrm{DS}}=25 \mathrm{~V}, f=1 \mathrm{MHz}$	$C_{\text {oss }}$	-	410	515	
Reverse transfer capacitance $V_{G S}=0 \mathrm{~V}, V_{\mathrm{DS}}=25 \mathrm{~V}, f=1 \mathrm{MHz}$	$C_{\text {rss }}$	-	230	290	
Turn-on delay time $\begin{aligned} & V_{\mathrm{DD}}=30 \mathrm{~V}, V_{\mathrm{GS}}=4.5 \mathrm{~V}, I_{\mathrm{D}}=47 \mathrm{~A}, \\ & R_{\mathrm{G}}=3.6 \Omega \end{aligned}$	$t_{\mathrm{d}(\mathrm{on})}$	-	15	25	ns
Rise time $\begin{aligned} & V_{\mathrm{DD}}=30 \mathrm{~V}, V_{\mathrm{GS}}=4.5 \mathrm{~V}, I_{\mathrm{D}}=47 \mathrm{~A}, \\ & R_{\mathrm{G}}=3.6 \Omega \end{aligned}$	t_{r}	-	30	45	
Turn-off delay time $\begin{aligned} & V_{\mathrm{DD}}=30 \mathrm{~V}, V_{\mathrm{GS}}=4.5 \mathrm{~V}, I_{\mathrm{D}}=47 \mathrm{~A}, \\ & R_{\mathrm{G}}=3.6 \Omega \end{aligned}$	$t_{\mathrm{d}(\text { (off) }}$	-	30	45	
Fall time $\begin{aligned} & V_{\mathrm{DD}}=30 \mathrm{~V}, V_{\mathrm{GS}}=4.5 \mathrm{~V}, I_{\mathrm{D}}=47 \mathrm{~A}, \\ & R_{\mathrm{G}}=3.6 \Omega \end{aligned}$	t_{f}	-	20	30	

Electrical Characteristics, at $T_{\mathrm{i}}=25^{\circ} \mathrm{C}$, unless otherwise specified

| Parameter | Symbol | Values | | | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| | | min. | typ. | max. | |
| Dynamic Characteristics | Q_{gs} | - | 7 | 10.5 | nC |
| Gate to source charge
 $V_{\mathrm{DD}}=40 \mathrm{~V}, I_{\mathrm{D}}=47 \mathrm{~A}$ | Q_{gd} | - | 23 | 34.5 | |
| Gate to drain charge
 $V_{\mathrm{DD}}=40 \mathrm{~V}, I_{\mathrm{D}}=47 \mathrm{~A}$ | Q_{g} | - | 60 | 90 | |
| Gate charge total
 $V_{\mathrm{DD}}=40 \mathrm{~V}, I_{\mathrm{D}}=47 \mathrm{~A}, V_{\mathrm{GS}}=0$ to 10 V | | | | | |
| Gate plateau voltage
 $V_{\mathrm{DD}}=40 \mathrm{~V}, I_{\mathrm{D}}=47 \mathrm{~A}$ | $V_{\text {(plateau) }}$ | - | 4.1 | - | V |

Reverse Diode

Inverse diode continuous forward current $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$	I_{S}	-	-	47	A
Inverse diode direct current,pulsed $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$I_{\text {SM }}$	-	-	188	
Inverse diode forward voltage $V_{\mathrm{GS}}=0 \mathrm{~V}, I_{\mathrm{F}}=94 \mathrm{~A}$	$V_{\text {SD }}$	-	1.1	1.7	V
Reverse recovery time $V_{\mathrm{R}}=30 \mathrm{~V}, I_{\mathrm{F}}=I_{\mathrm{S}}, \mathrm{~d} i_{\mathrm{F}} / \mathrm{d} t=100 \mathrm{~A} / \mu \mathrm{s}$	$t_{\text {rr }}$	-	75	115	ns
Reverse recovery charge $V_{\mathrm{R}}=30 \mathrm{~V}, I_{\mathrm{F}}=I_{\mathrm{S}}, \mathrm{~d} i_{\mathrm{F}} / \mathrm{d} t=100 \mathrm{~A} / \mu \mathrm{s}$	$Q_{\text {rr }}$	-	0.15	0.25	$\mu \mathrm{C}$

Power Dissipation

$$
P_{\mathrm{tot}}=f\left(T_{\mathrm{C}}\right)
$$

Safe operating area

$I_{D}=f\left(V_{D S}\right)$
parameter: $D=0, T_{C}=25^{\circ} \mathrm{C}$

Typ. output characteristics
$I_{D}=f\left(V_{D S}\right)$
parameter: $t_{\mathrm{p}}=80 \mu \mathrm{~s}$

Typ. transfer characteristics $I_{D}=f\left(V_{G S}\right)$
parameter: $t_{\mathrm{p}}=80 \mu \mathrm{~s}$
$V_{D S} \geq 2 \times I_{D} \times R_{D S(o n) m a x}$

Typ. drain-source-on-resistance

$R_{\mathrm{DS}(\text { on })}=f\left(I_{\mathrm{D}}\right)$
parameter: $V_{G S}$

Typ. forward transconductance
$g_{\mathrm{s}}=f(b) ; T_{\mathrm{j}}=25^{\circ} \mathrm{C}$
parameter: $g_{\text {ts }}$

Drain-source on-resistance

$R_{\mathrm{DS}(\text { on })}=f\left(T_{\mathrm{j}}\right)$
parameter : $I_{D}=33 \mathrm{~A}, V_{G S}=4.5 \mathrm{~V}$

Typ. capacitances
$C=f\left(V_{D S}\right)$
parameter: $V_{\mathrm{GS}}=0 \mathrm{~V}, f=1 \mathrm{MHz}$

Gate threshold voltage
$V_{\mathrm{GS}}(\mathrm{th})=f\left(T_{\mathrm{j}}\right)$
parameter: $V_{G S}=V_{D S}, L_{D}=90 \mu \mathrm{~A}$

Forward characteristics of reverse diode
$I_{F}=f\left(\mathrm{~V}_{\mathrm{SD}}\right)$
parameter: $T_{j}, \hbar_{p}=80 \mu \mathrm{~s}$

Avalanche Energy $E_{\text {AS }}=f\left(T_{\mathrm{j}}\right)$

parameter: $I_{D}=47 \mathrm{~A}, V_{D D}=25 \mathrm{~V}$
$R_{G S}=25 \Omega$

Drain-source breakdown voltage
$V_{(\mathrm{BR}) \mathrm{DSS}}=f\left(T_{\mathrm{j}}\right)$

Typ. gate charge
$V_{\mathrm{GS}}=f\left(Q_{\text {Gate }}\right)$
parameter: $I_{\text {puls }}=47 \mathrm{~A}$

