

Improved R_{DS(on)} !

BUZ 102SL

Features

- N channel
- Enhancement mode
- Avalanche rated
- Logic Level
- dv/dt rated
- 175 °C operating temperature

Product Summary

Drain source voltage	V _{DS}	55	V
Drain-Source on-state resistance	R _{DS(on)}	0.015	Ω
Continuous drain current	I _D	47	А

Pin 3 S

Туре	Package	Ordering Code	Packaging	Pin 1	Pin 2
BUZ102SL	P-TO220-3-1	Q67040-S4010-A2	Tube	G	D
BUZ102SL E3045A	P-TO263-3-2	Q67040-S4010-A6	Tape and Reel		
BUZ102SL E3045	P-TO263-3-2	Q67040-S4010-A5	Tube		

Maximum Ratings, at $T_i = 25$ °C unless otherwise specified

Parameter	Symbol	Value	Unit
Continuous drain current	I _D		Α
<i>T</i> _C = 25 °C		47	
$T_{\rm C} = 100 \ ^{\circ}{\rm C}$		33	
Pulsed drain current	/ Dpulse	188	
<i>T</i> _C = 25 °C			
Avalanche energy, single pulse	E _{AS}	245	mJ
$I_{\rm D} = 47 \text{ A}, \ V_{\rm DD} = 25 \text{ V}, \ R_{\rm GS} = 25 \ \Omega$			
Avalanche energy, periodic limited by T_{jmax}	E _{AR}	12	
Reverse diode d v/dt	d <i>v</i> /dt	6	kV/μs
$I_{\rm S} = 47 \text{A}, \ V_{\rm DS} = 40 \text{V}, \ \text{d}i/\text{d}t = 200 \text{A}/\mu \text{s},$			
T _{jmax} = 175 °C			
Gate source voltage	V _{GS}	-20	V
Power dissipation	P _{tot}	120	W
<i>T</i> _C = 25 °C			
Operating and storage temperature	T _j , T _{stg}	-55 +175	°C
IEC climatic category; DIN IEC 68-1		55/175/56	

Thermal Characteristics

Parameter	Symbol	Values		Unit	
		min.	typ.	max.	
Characteristics					
Thermal resistance, junction - case	R _{thJC}	-	-	1.25	K/W
Thermal resistance, junction - ambient, leded	R _{thJA}	-	-	62	
SMD version, device on PCB:	R _{thJA}				
@ min. footprint		-	-	62	
@ 6 cm ² cooling area ¹⁾		-	-	40	

Electrical Characteristics, at T_i = 25 °C, unless otherwise specified

Parameter	Symbol	Values		Unit	
		min.	typ.	max.	
Static Characteristics	·				
Drain- source breakdown voltage	V _{(BR)DSS}	55	-	-	V
$V_{\rm GS} = 0 \text{ V}, \ I_{\rm D} = 0.25 \text{ mA}$	、 <i>`</i>				
Gate threshold voltage, $V_{GS} = V_{DS}$	V _{GS(th)}	1.2	1.6	2	
<i>I</i> _D = 90 μA					
Zero gate voltage drain current	I _{DSS}				μA
$V_{\rm DS} = 50 \text{ V}, \ V_{\rm GS} = 0 \text{ V}, \ T_{\rm j} = 25 ^{\circ}\text{C}$		-	0.1	1	
$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}, T_j = 150 \text{ °C}$		-	-	100	
Gate-source leakage current	I _{GSS}	-	10	100	nA
$V_{\rm GS} = 20 \ \rm V, \ V_{\rm DS} = 0 \ \rm V$					
Drain-Source on-state resistance	R _{DS(on)}				Ω
$V_{\rm GS}$ = 4.5 V, $I_{\rm D}$ = 33 A	``	-	0.021	0.024	
<i>V</i> _{GS} = 10 V, <i>I</i> _D = 33 A		-	0.0135	0.015	

¹ Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air.

Parameter	Symbol		Values		
		min.	typ.	max.]
Dynamic Characteristics					
Transconductance	g _{fs}	10	40	-	S
$V_{\text{DS}} \ge 2^* I_{\text{D}}^* R_{\text{DS(on)max}}$, $I_{\text{D}} = 33 \text{ A}$					
Input capacitance	C _{iss}	-	1380	1730	pF
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$					
Output capacitance	C _{oss}	-	410	515]
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$					
Reverse transfer capacitance	C _{rss}	-	230	290]
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$					
Turn-on delay time	t _{d(on)}	-	15	25	ns
$V_{\rm DD} = 30$ V, $V_{\rm GS} = 4.5$ V, $I_{\rm D} = 47$ A,					
$R_{\rm G}$ = 3.6 Ω					
Rise time	t _r	-	30	45	
$V_{\text{DD}} = 30 \text{ V}, \ V_{\text{GS}} = 4.5 \text{ V}, \ I_{\text{D}} = 47 \text{ A},$					
$R_{\rm G}$ = 3.6 Ω					
Turn-off delay time	t _{d(off)}	-	30	45	
$V_{\rm DD} = 30$ V, $V_{\rm GS} = 4.5$ V, $I_{\rm D} = 47$ A,					
$R_{\rm G} = 3.6 \ \Omega$					
Fall time	t _f	-	20	30	
$V_{\rm DD} = 30$ V, $V_{\rm GS} = 4.5$ V, $I_{\rm D} = 47$ A,					
$R_{\rm G}$ = 3.6 Ω					

Electrical Characteristics, at $T_i = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	1
Dynamic Characteristics	,	,	,		
Gate to source charge	Q _{gs}	-	7	10.5	nC
$V_{\rm DD} = 40 \text{ V}, \ I_{\rm D} = 47 \text{ A}$					
Gate to drain charge	Q _{gd}	-	23	34.5	1
$V_{\rm DD} = 40 \text{ V}, \ I_{\rm D} = 47 \text{ A}$	J J				
Gate charge total	Q_g	-	60	90	1
$V_{\rm DD}$ = 40 V, $I_{\rm D}$ = 47 A, $V_{\rm GS}$ = 0 to 10 V					
Gate plateau voltage	V _(plateau)	-	4.1	-	V
$V_{\rm DD} = 40 \text{ V}, \ I_{\rm D} = 47 \text{ A}$, , ,				

Electrical Characteristics, at $T_i = 25$ °C, unless otherwise specified

Reverse	Diode

Inverse diode continuous forward current	I _S	-	-	47	A
<i>T</i> _C = 25 °C					
Inverse diode direct current, pulsed	/ _{SM}	-	-	188	
$T_{\rm C} = 25 \ ^{\circ}{\rm C}$					
Inverse diode forward voltage	V _{SD}	-	1.1	1.7	V
$V_{\rm GS} = 0 \text{ V}, I_{\rm F} = 94 \text{ A}$					
Reverse recovery time	t _{rr}	-	75	115	ns
<i>V</i> _R = 30 V, <i>I</i> _F = <i>I</i> _S , d <i>i</i> _F /d <i>t</i> = 100 A/µs					
Reverse recovery charge	Q _{rr}	-	0.15	0.25	μC
$V_{\rm R}$ = 30 V, $I_{\rm F}$ = $I_{\rm S}$, d $i_{\rm F}$ /d t = 100 A/µs					

Power Dissipation

 $P_{\rm tot} = f(T_{\rm C})$

Safe operating area

Drain current

Transient thermal impedance

$I_{D} = f(V_{DS})$ parameter: $t_{p} = 80 \ \mu s$ $I_{20} \qquad P_{tot}^{-} = 120W$ A $I_{100} \qquad V_{tot}^{-} = \frac{1}{2}$

Typ. output characteristics

Typ. transfer characteristics $I_{D}= f(V_{GS})$ parameter: $t_{p} = 80 \ \mu s$

Typ. drain-source-on-resistance $R_{\text{DS(on)}} = f(I_{\text{D}})$ parameter: V_{GS} BUZ102SL 0.080 d f с е Ω 0.060 UDS(on) 0.040 0.030 0.020 0.010 - V_{GS} [V] = b c d e f 3.0 3.5 4.0 4.5 5.0 g 5.5 h i j 6.0 6.5 7.0 8.0 10.0 0.000^L0 50 10 30 40 80 А 100 20 60 70

Typ. forward transconductance

 $g_{\rm fs} = f(I_{\rm D}); T_{\rm j} = 25^{\circ}{\rm C}$

Data Book

 $I_{\rm D}$

Drain-source on-resistance $R_{\rm DS(on)} = f(T_{\rm j})$ parameter : I_D = 33 A, V_{GS} = 4.5 V BUZ102SL 0.085 Ω 0.070 (uo) SCI *H* 0.060 0.040 98% 0.030 0.020 0.010 0.000 -20 20 60 100 140 °C 200 T_{j}

Typ. capacitances

 $C = f(V_{\rm DS})$

parameter: $V_{GS} = 0 V$, f = 1 MHz

Gate threshold voltage

 $V_{\text{GS(th)}} = f(T_{j})$ parameter : $V_{GS} = V_{DS}$, $I_D = 90 \ \mu A$

Forward characteristics of reverse diode

 $I_{\rm F} = f(V_{\rm SD})$ parameter: T_{j} , t_{p} = 80 µs

Avalanche Energy $E_{AS} = f(T_j)$

parameter: $I_{\rm D}$ = 47 A, $V_{\rm DD}$ = 25 V

 $R_{
m GS} = 25 \ \Omega$

Drain-source breakdown voltage

 $V_{(BR)DSS} = f(T_j)$

Typ. gate charge $V_{\rm GS} = f(Q_{\rm Gate})$ parameter: *I*_{D puls} = 47 A 16 ۷ 12 VGS 10 8 0,2 V 0,8 V_{DS ma} 6 4 2 0,0 10 20 30 40 50 60 70 ⁸⁰ nC ¹⁰⁰