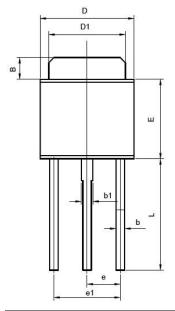


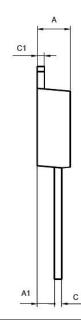
600V N-Channel MOSFET

Description

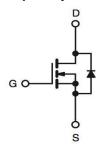
The MSU4N60_S is a N-channel enhancement-mode MOSFET, providing the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost effectiveness. The TO-251 package is universally preferred for all commercial-industrial applications

Features


- · Originative New Design
- · Very Low Intrinsic Capacitances
- · Excellent Switching Characteristics
- Unrivalled Gate Charge: 12.8 nC (Typ.)
- · Extended Safe Operating Area
- Lower RDS(ON): 2.0 Ω (Typ.) @VGS=10V
- 100% Avalanche Tested
- · RoHS compliant package


Packing & Order Information

80/Tube; 4,000/Box


RoHS COMPLIANT

	Dimens	ions in	Dimensions in		
	Millim	eters	Inches		
Symbol	min	max	min	max	
А	2.15	2.45	0.85	0.96	
A1	1.00	1.40	0.39	0.55	
В	1.25	1.75	0.49	0.69	
b	0.45	0.75	0.18	0.3	
b1	0.65	0.95	0.26	0.37	
С	0.38	0.64	0.15	0.25	
C1	0.38	0.64	0.15	0.25	
D	6.30	6.70	2.48	2.64	
D1	5.10	5.50	2.01	2.17	
E	5.30	5.70	2.09	2.24	
е	2.3 (typ.)	0.91 (typ.)		
e1	4.4	4.8	1.73	1.89	
L	7.4	8.0	2.91	3.15	

Graphic symbol

600V N-Channel MOSFET

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
V _{DSS}	Drain-Source Voltage	600	V
V _{GS}	Gate-Source Voltage	±30	V
1	Drain Current -Continuous (TC=25°C)	4.5	А
I _D	Drain Current -Continuous (TC=100°C)	2.6	Α
I _{DM}	Drain Current Pulsed	18	А
E _{AS}	Single Pulsed Avalanche Energy	33.9	mJ
E _{AR}	Repetitive Avalanche Energy	5.0	mJ
dV/dt	Peak Diode Recovery dV/dt	4.5	V/ns
D	Power Dissipation (TC = 25 °C)	50	W
P_D	- Derate above 25°C	0.4	W/°C
T _J , T _{STG}	Operating and Storage Temperature	-55 to +150	°C
T _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds	300	°C

•Drain current limited by maximum junction temperature

Thermal Re	Thermal Resistance Characteristics				
Symbol	Parameter	Max.	Units		
$R_{\theta J}c$	Junction-to-Case	2.3	°C/W		
$R_{\theta JA}$	Junction-to-Ambient	85	C/VV		

On Characteristics						
Symbol	Parameter	Test Conditions	Min	Тур.	Max.	Units
V_{GS}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2.0		4.0	V
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}$, $I_{D} = 2.25 \text{ A}$		2.0	2.5	Ω

Off Chara	cteristics					
Symbol	Parameter	Test Conditions	Min	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu A$	600			V
ΔBV_{DSS} / ΔT_{J}	Breakdown Voltage Temperature Coefficient	I _D = 250μA, Referenced to 25°C		0.65		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 600 V , V _{GS} = 0 V V _{DS} = 480 V , T _C = 125°C			1 10	μA
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = 30 \text{ V}$, $V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V , V _{DS} = 0 V			-100	nA

600V N-Channel MOSFET

Dynamic	Dynamic Characteristics						
Symbol	Parameter	Test Conditions	Min	Тур.	Max.	Units	
t _{d(on)}	Turn-On Time			10		ns	
t _r	Turn-On Time	$V_{DS} = 300 \text{ V}, I_{D} = 4.5 \text{ A},$		40		ns	
$t_{d(off)}$	Turn-Off Delay Time	$R_G = 25 \Omega$		40		ns	
tf	Turn-Off Fall Time			50		ns	
Q_g	Total Gate Charge			12.8		nC	
Q_{gs}	Gate-Source Charge	$V_{DS} = 480 \text{ V}, I_D = 4.5 \text{ A},$ $V_{GS} = 10 \text{ V}$		2.4		nC	
Q_gd	Gate-Drain Charge			7.1		nC	
C _{ISS}	Input Capacitance			560	580	pF	
C _{OSS}	Output Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ F = 1.0 MHz		55	58	pF	
C _{RSS}	Reverse Transfer Capacitance	-		7	7.2	pF	

Symbol	Parameter	Test Conditions	Min	Тур.	Max.	Units
I _S	Continuous Source-Drain Diode Forward Current				4	
I _{SM}	Pulsed Source-Drain Diode Forward Current				18	A
V _{SD}	Source-Drain Diode Forward Voltage	I _S = 1 A , V _{GS} = 0 V			1.5	V
t _{rr}	Reverse Recovery Time	I _S = 1 A , V _{GS} = 0 V		300		ns
Q _{rr}	Reverse Recovery Charge	diF/dt = 100A/µs		2.1		μC

Notes;

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. L=55mH, I_{AS} =4.5A, V_{DD} =50V, R_{G} =50 Ω , Starting T_{J} =25 $^{\circ}$ C
- 3. I_{AS} =4.5A, V_{DD} =50V, L=4mH, V_{G} =10V, starting TJ=+25°C.
- 4. I_{SD} ≤4A, di/dt≤100A/ μ s, V_{DD} ≤B V_{DSS} , Starting T_J =25°C
- 5. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle≤ 2%
- 6. Essentially Independent of Operating Temperature

600V N-Channel MOSFET

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Bruckewell Technology Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Bruckewell"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Bruckewell makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Bruckewell disclaims

- (i) Any and all liability arising out of the application or use of any product.
- (ii) Any and all liability, including without limitation special, consequential or incidental damages.
- (iii) Any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Bruckewell's knowledge of typical requirements that are often placed on Bruckewell products in generic applications.

Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time.

Product specifications do not expand or otherwise modify Bruckewell's terms and conditions of purchase, including but not limited to the warranty expressed therein.