

CGHV35150 150 W, 2900 - 3500 MHz, 50V, GaN HEMT for S-Band Radar Systems

Cree's CGHV35150 is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically with high efficiency, high gain and wide bandwidth capabilities, which makes the CGHV35150 ideal for 2.9 - 3.5 GHz S-Band radar amplifier applications. The transistor is supplied in a ceramic/metal flange and pill package.

Typical Performance 3.1 - 3.5 GHz ($T_c = 85^{\circ}c$)

Parameter	3.1 GHz	3.2 GHz	3.3 GHz	3.4 GHz	3.5 GHz	Units
Output Power	180	180	180	170	150	dB
Gain	13.5	13.5	13.5	13.3	12.7	dBc
Drain Efficiency	50	49	50	49	48	%

Note: Measured in the CGHV35150F-TB application circuit, under 300 μ s pulse width, 20% duty cycle, P_{IN} = 39 dBm

FEATURES:

- Rated Power = 150 W @ T_{CASE} = 85°C
- Operating Frequency = 2.9 3.5 GHz
- Transient 100 µsec 300 µsec @ 20% Duty Cycle
- 13.5 dB Power Gain @ T_{CASE} = 85°C
- 50 % Typical Drain Efficiency @ $T_{CASE} = 85^{\circ}C$
- Input Matched
- <0.3 dB Pulsed Amplitude Droop

Absolute Maximum Ratings (not simultaneous)

Parameter	Symbol	Rating	Units	Conditions
Pulse Width	PW	300	μs	
Duty Cycle	DC	20	%	
Drain-Source Voltage	V _{DSS}	125	Volts	25°C
Gate-to-Source Voltage	V _{GS}	-10, +2	Volts	25°C
Storage Temperature	Τ _{stg}	-65, +150	°C	
Operating Junction Temperature	T,	225	°C	
Maximum Forward Gate Current	\mathbf{I}_{GMAX}	30	mA	25°C
Maximum Drain Current ¹	I	12	А	25°C
Soldering Temperature ²	Τ _s	245	°C	
Screw Torque	τ	40	in-oz	
Pulsed Thermal Resistance, Junction to Case ³	$R_{_{\theta JC}}$	0.81	°C/W	300 µsec, 20%, 85°C
Pulsed Thermal Resistance, Junction to Case ⁴	R _{eJC}	0.86	°C/W	300 µsec, 20%, 85°C
Case Operating Temperature	Τ _c	-40, +150	°C	30 seconds

Note:

¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering at <u>http://www.cree.com/rf/document-library</u>

 $^{\scriptscriptstyle 3}$ Measured for the CGHV35150P at $\rm P_{_{DISS}}$ = 150 W

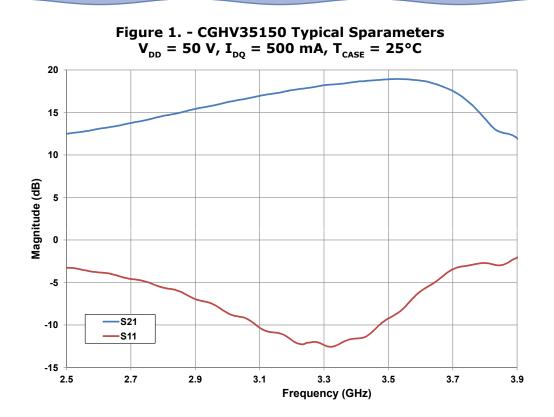
 4 Measured for the CGHV35150F at $\rm P_{\rm DISS}^{\rm SISS}$ = 150 W

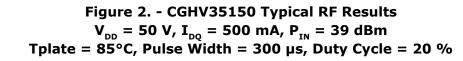
Electrical Characteristics

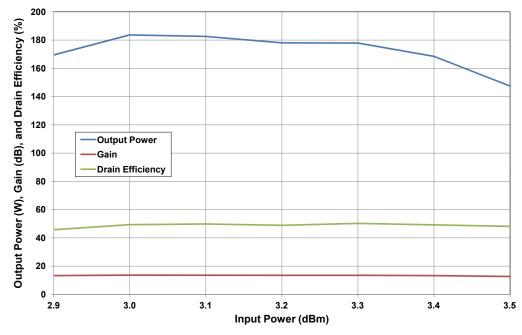
Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹ (T _c = 25 °C)						
Gate Threshold Voltage	$V_{\rm GS(th)}$	-3.8	-3.0	-2.3	V_{DC}	$V_{_{\rm DS}}$ = 10 V, $I_{_{\rm D}}$ = 28.8 mA
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-2.7	-	$V_{\rm DC}$	$V_{_{\rm DS}}$ = 50 V, $I_{_{\rm D}}$ = 500 mA
Saturated Drain Current ²	I _{DS}	21.6	25.9	-	А	$V_{_{\rm DS}}$ = 6.0 V, $V_{_{\rm GS}}$ = 2.0 V
Drain-Source Breakdown Voltage	V _{BR}	150	-	-	V _{DC}	$V_{\rm _{GS}}$ = -8 V, $I_{\rm _{D}}$ = 28.8 mA
RF Characteristics ³ ($T_c = 85^{\circ}C$,	$F_0 = 3.1 - 3.$	5 GHz unles	s otherwise	noted)		
Output Power at 3.1 GHz	P _{out}	130	170	-	W	$V_{_{DD}}$ = 50 V, $I_{_{DQ}}$ = 500 mA, $P_{_{\rm IN}}$ = 39 dBm
Output Power at 3.5 GHz	P _{out}	100	135	-	W	$V_{_{\rm DD}}$ = 50 V, $I_{_{\rm DQ}}$ = 500 mA, $P_{_{\rm IN}}$ = 39 dBm
Gain at 3.1 GHz	G _P	12.0	13.3	-	dB	$V_{_{DD}}$ = 50 V, $I_{_{DQ}}$ = 500 mA, $P_{_{\rm IN}}$ = 39 dBm
Gain at 3.5 GHz	G _P	11.0	12.3	-	dB	$V_{_{\rm DD}}$ = 50 V, $I_{_{\rm DQ}}$ = 500 mA, $P_{_{\rm IN}}$ = 39 dBm
Drain Efficiency at 3.1 GHz	D _E	40	47	-	%	$V_{_{\rm DD}}$ = 50 V, $I_{_{\rm DQ}}$ = 500 mA, $P_{_{\rm IN}}$ = 39 dBm
Drain Efficiency at 3.5 GHz	D _E	40	44	-	%	$V_{_{\rm DD}}$ = 50 V, $I_{_{\rm DQ}}$ = 500 mA, $P_{_{\rm IN}}$ = 39 dBm
Amplitude Droop	D	-	-0.3	-	dB	$V_{_{\rm DD}}$ = 50 V, $I_{_{\rm DQ}}$ = 500 mA, $P_{_{\rm IN}}$ = 39 dBm
Output Mismatch Stress	VSWR	-	-	5:1	Ψ	No damage at all phase angles, $V_{_{\rm DD}}$ = 50 V, $I_{_{\rm DQ}}$ = 500 mA, $P_{_{\rm IN}}$ = 39 dBm Pulsed

Notes:

¹ Measured on wafer prior to packaging.


² Scaled from PCM data.


 _3 Measured in CGHV35150-TB. Pulse Width = 300 $\mu S,$ Duty Cycle = 20%.


Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

Typical Performance

Copyright © 2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

3

Typical Performance

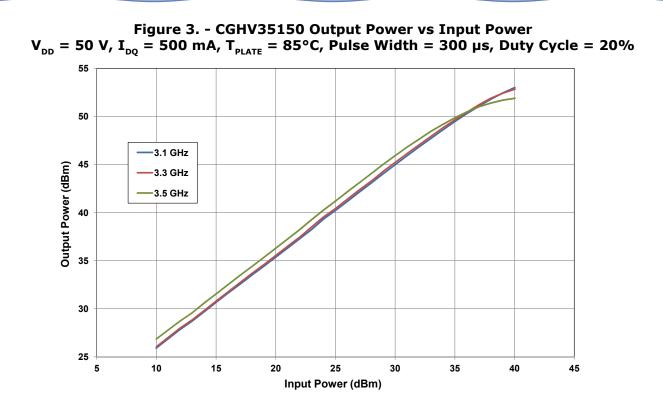
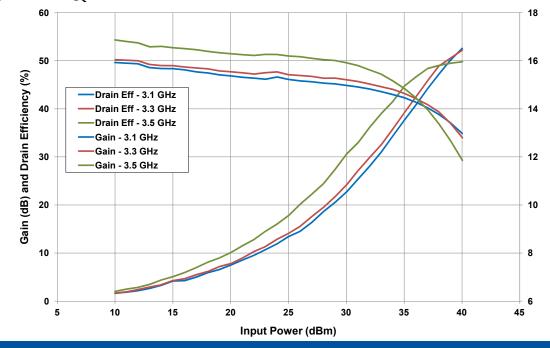
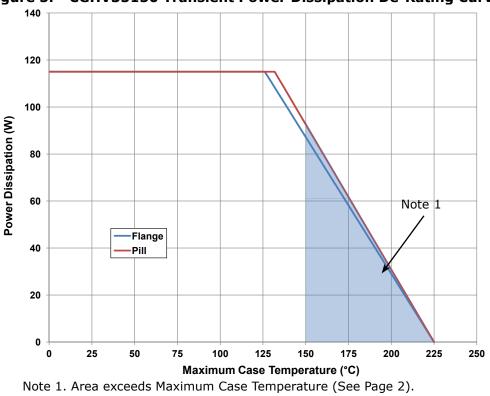



Figure 4. - CGHV35150 Gain and Drain Efficiency vs Input Power V_{DD} = 50 V, I_{DO} = 500 mA, Tplate = 85°C, Pulse Width = 300 µs, Duty Cycle = 20 %

Copyright © 2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf


4

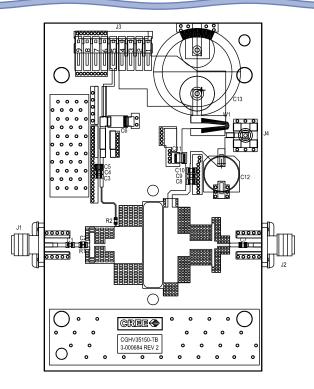
CGHV35150-TB Application Circuit Bill of Materials

Designator	Description	Qty
R1	RES, 511 OHM, +/- 1%, 1/16W, 0603	1
R2	RES, 5.1 OHM, +/- 1%, 1/16W, 0603	1
C1,C7,C8	CAP, 10pF, +/- 1%, 250V, 0805	3
C2	CAP, 6.8pF, +/- 0.25 pF,250V, 0603	1
C3	CAP, 10.0pF, +/-5%,250V, 0603	1
C4,C9	CAP, 470PF, 5%, 100V, 0603, X	2
C5,C10	CAP, 33000PF, 0805,100V, X7R	1
C6	CAP 10uF 16V TANTALUM	1
C11	CAP, 1.0UF, 100V, 10%, X7R, 1210	1
C12	CAP, 33 UF, 20%, G CASE	1
C13	CAP, 3300 UF, +/-20%, 100V, ELECTROLYTIC	1
J1,J2	CONN, SMA, PANEL MOUNT JACK, FL	2
J3	HEADER RT>PLZ .1CEN LK 9POS	1
]4	CONNECTOR ; SMB, Straight, JACK, SMD	1
W1	CABLE ,18 AWG, 4.2	1
	PCB, RO4350, 20 MIL THK, CGHV35150	1
Q1	CGHV35150	1

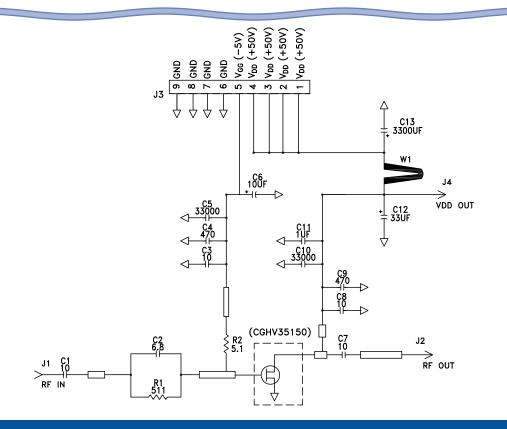
CGHV35150 Power Dissipation De-rating Curve

Figure 5. - CGHV35150 Transient Power Dissipation De-Rating Curve

Copyright © 2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

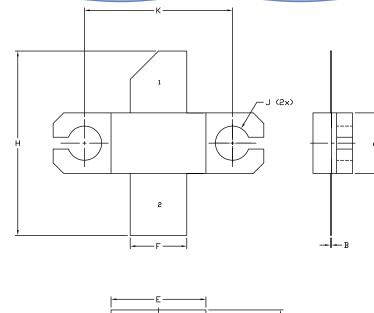

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

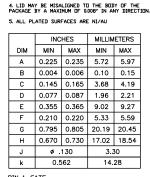
CGHV35150 Rev 0.3


5

CGHV35150-TB Application Circuit Outline

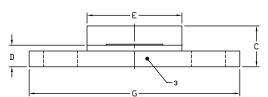
CGHV35150-TB Application Circuit Schematic




Copyright © 2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

Product Dimensions CGHV35150F (Package Type - 440193)


1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.

2. CONTROLLING DIMENSION: INCH.

PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE

NOTES

Product Dimensions CGHV35150P (Package Type - 440206)

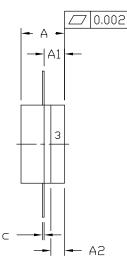
NETES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M -1994.

2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.

4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.


	INC	HES	MILLIM	NOTES	
DIM	MIN	MAX	MIN	МАХ	
A	0.125	0.145	3.18	3.68	
A1	0.057	0.067	1.45	1.70	
A2	0.035	0.045	0.89	1.14	
b	0.210	0.220	5.33	5.59	2x
с	0.004	0.006	0.10	0.15	2x
D	0.375	0.385	9.53	9.78	
D1	0.355	0.365	9.02	9.27	
E	0.400	0.460	10.16	11.68	
E1	0.225	0.235	5.72	5.97	
L	0.085	0.115	2.16	2.92	2×
α	45' REF		45° REF		

PIN 1. GATE

2. DRAIN

3. SOURCE

E1 Ε 2 b

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

Copyright © 2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

D

D1

1

α

1

L 4

Part Number System

Parameter	Value	Units	
Upper Frequency ¹	3.5	GHz	
Power Output	150	W	
Package	Flange	-	

Table 1.

Note¹: Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Character Code	Code Value	
A	0	
В	1	
С	2	
D	3	
E	4	
F	5	
G	6	
н	7	
J	8	
К	9	
Examples:	1A = 10.0 GHz 2H = 27.0 GHz	

Table 2.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

Copyright © 2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 www.cree.com/rf

Sarah Miller Marketing & Export Cree, RF Components 1.919.407.5302

Ryan Baker Marketing Cree, RF Components 1.919.407.7816

Tom Dekker Sales Director Cree, RF Components 1.919.407.5639

Copyright © 2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.859.2733 Fax: +1.919.869.2733 www.cree.com/rf