

CGHV27200

200 W, 2500-2700 MHz, GaN HEMT for LTE

Cree's CGHV27200 is a gallium nitride (GaN) high electron mobility transistor (HEMT) is designed specifically for high efficiency, high gain and wide bandwidth capabilities, which makes the CGHV27200 ideal for 2.5-2.7 GHz LTE and BWA amplifier applications. The transistor is input matched and supplied in a ceramic/metal flange package.

Package Type: 440162 and 440161 PN: CGHV27200F and CGHV27200P

Typical Performance Over 2.5 - 2.7 GHz ($T_c = 25$ °c) of Demonstration Amplifier

Parameter	2.5 GHz	2.6 GHz	2.7 GHz	Units
Gain @ 46 dBm	15.0	16.0	16.0	dB
ACLR @ 46 dBm	-36.5	-37.5	-37.0	dBc
Drain Efficiency @ 46 dBm	29.0	28.5	29.0	%

Note:

Measured in the CGHV27200-TB amplifier circuit, under WCDMA 3GPP test model 1, 64 DPCH, 45% clipping, $PAR = 7.5 \text{ dB} \oplus 0.01\%$ Probability on CCDF.

Features

ROHS

- 2.5 2.7 GHz Operation
- 16 dB Gain
- $\bullet \quad$ -37 dBc ACLR at 40 W $\mathrm{P}_{\mathrm{AVE}}$
- 29 % Efficiency at 40 W P_{AVE}
- High Degree of DPD Correction Can be Applied

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Units
Drain-Source Voltage	$V_{\scriptscriptstyle DSS}$	125	Volts	25°C
Gate-to-Source Voltage	V_{GS}	-10, +2	Volts	25°C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	T _j	225	°C	
Maximum Forward Gate Current	I_{GMAX}	32	mA	25°C
Maximum Drain Current ¹	I_{DMAX}	12	Α	25°C
Soldering Temperature ²	T _s	245	°C	
Screw Torque	τ	80	in-oz	
Thermal Resistance, Junction to Case ³	$R_{_{\theta JC}}$	1.22	°C/W	85° C, $P_{DISS} = 96 \text{ W}$
Thermal Resistance, Junction to Case ⁴	$R_{_{ heta JC}}$	1.54	°C/W	85°C, P _{DISS} = 96 W
Case Operating Temperature ⁵	T _c	-40, +150	°C	30 seconds

Note:

- ¹ Current limit for long term, reliable operation.
- ² Refer to the Application Note on soldering at http://www.cree.com/rf/document-library
- $^{\scriptscriptstyle 3}$ Measured for the CGHV27200P
- ⁴ Measured for the CGHV27200F
- $^{\rm 5}$ See also, the Power Dissipation De-rating Curve on Page 6

Electrical Characteristics ($T_c = 25$ °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹						
Gate Threshold Voltage	$V_{GS(th)}$	-3.8	-3.0	-2.3	V_{DC}	V_{DS} = 10 V, I_{D} = 32 mA
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-2.7	-	V_{DC}	$V_{DS} = 50 \text{ V, } I_{D} = 1.0 \text{ A}$
Saturated Drain Current ²	$I_{\scriptscriptstyle DS}$	24	28.8	-	А	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	$V_{\rm BR}$	150	-	-	V_{DC}	$V_{GS} = -8 \text{ V, } I_D = 32 \text{ mA}$
RF Characteristics ⁵ (T _c = 25 ° C, F _o	= 2.7 GHz un	less otherwi	se noted)			
Saturated Output Power ^{3,4}	P_{SAT}	-	300	-	W	$V_{DD} = 50 \text{ V, } I_{DQ} = 1.0 \text{ A}$
Pulsed Drain Efficiency ³	η	-	62	-	%	$V_{DD} = 50 \text{ V, } I_{DQ} = 1.0 \text{ A, } P_{OUT} = P_{SAT}$
Gain ⁶	G	-	15.25	-	dB	$V_{DD} = 50 \text{ V, } I_{DQ} = 1.0 \text{ A, } P_{OUT} = 46 \text{ dBm}$
WCDMA Linearity ⁶	ACLR	-	-37	-	dBc	$V_{DD} = 50 \text{ V, } I_{DQ} = 1.0 \text{ A, } P_{OUT} = 46 \text{ dBm}$
Drain Efficiency ⁶	η	-	30.5	-	%	$V_{DD} = 50 \text{ V, } I_{DQ} = 1.0 \text{ A, } P_{OUT} = 46 \text{ dBm}$
Output Mismatch Stress ³	VSWR	-	-	10 : 1	Ψ	No damage at all phase angles, $V_{\rm DD} = 50$ V, $I_{\rm DQ} = 1.0$ A, $P_{\rm OUT} = 200$ W Pulsed
Dynamic Characteristics						
Input Capacitance ⁷	C _{GS}	-	97	-	pF	$V_{DS} = 50 \text{ V}, V_{gs} = -8 \text{ V}, f = 1 \text{ MHz}$
Output Capacitance ⁷	C _{DS}	-	13.4	-	pF	$V_{DS} = 50 \text{ V}, V_{gs} = -8 \text{ V}, f = 1 \text{ MHz}$
Feedback Capacitance	C_{GD}	-	0.94	-	pF	$V_{DS} = 50 \text{ V, } V_{gs} = -8 \text{ V, } f = 1 \text{ MHz}$

Notes:

- ¹ Measured on wafer prior to packaging.
- $^{\rm 2}$ Scaled from PCM data.
- $^{\scriptscriptstyle 3}$ Pulse Width = 100 $\mu S,$ Duty Cycle = 10%
- 4 P_{SAT} is defined as I_G = 3 mA peak.
- ⁵ Measured in CGHV27200-TB.
- ⁶ Single Carrier WCDMA, 3GPP Test Model 1, 64 DPCH, 45% Clipping, PAR = 7.5 dB @ 0.01% Probability on CCDF.
- ⁷ Includes package and internal matching components.

Figure 1. - Small Signal Gain and Return Losses vs Frequency for the CGHV27200 measured in CGHV27200-TB Amplifier Circuit

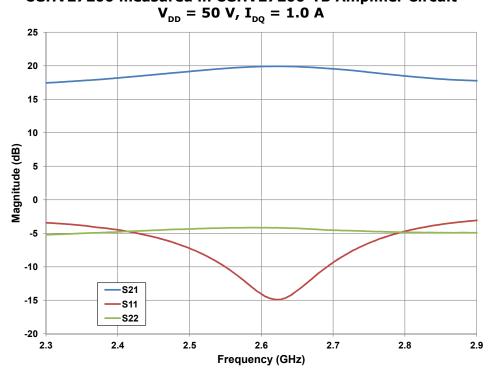


Figure 2. - Typical Pulsed Measurements vs Input Power of the CGHV27200 measured in CGHV27200-TB Amplifier Circuit. $V_{DS}=50~V,~I_{DQ}=1.0~A,~Freq=2.6~GHz,~Pulse~Width=100~\mu s,~Duty~Cycle=10~\%$

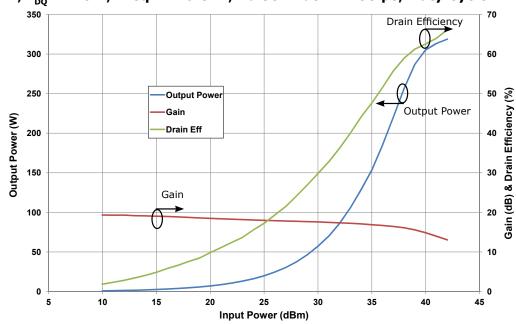


Figure 3. - Typical Linearity vs Output Power for the CGHV27200 measured in CGHV27200-TB Amplifier Circuit $V_{DD}=50~V,~I_{DO}=1.0~A,~Freq=2.6~GHz,~1c~WCDMA~7.5~dB~PAR$

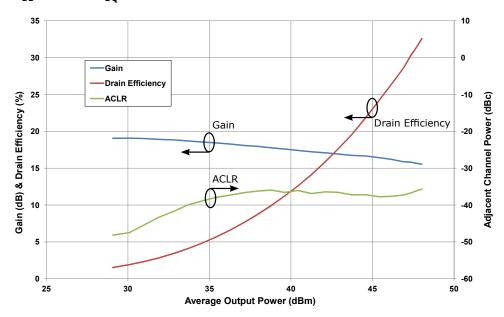
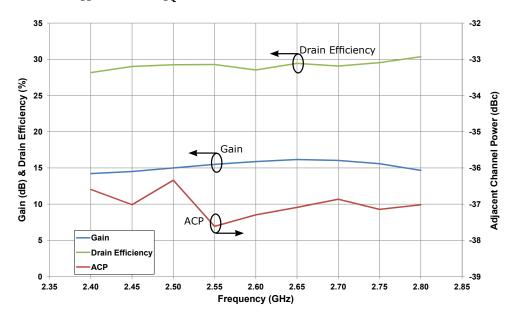
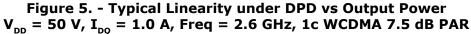




Figure 4. - Typical Linearity at $P_{\text{AVE}} = 46 \text{ dBm}$ over Frequency of the CGHV27200 measured in CGHV27200-TB Amplifier Circuit. $V_{\text{DD}} = 50 \text{ V}, I_{\text{DO}} = 1.0 \text{ A}, 1 \text{c} \text{ WCDMA 7.5 dB PAR}$

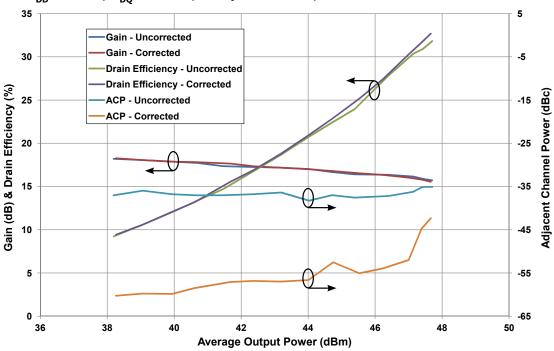


Figure 6. - Spectral Mask at P_{AVE} = 46 dBm with and without DPD V_{DD} = 50 V, I_{DQ} = 1.0 A, 1c WCDMA 7.5 dB PAR

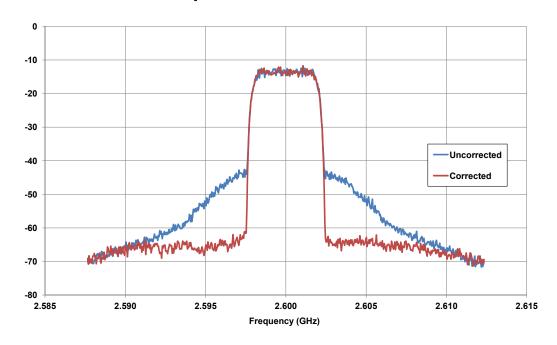
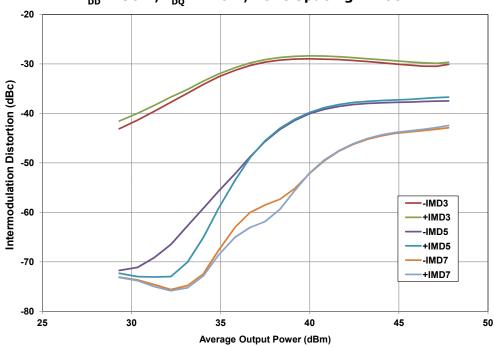
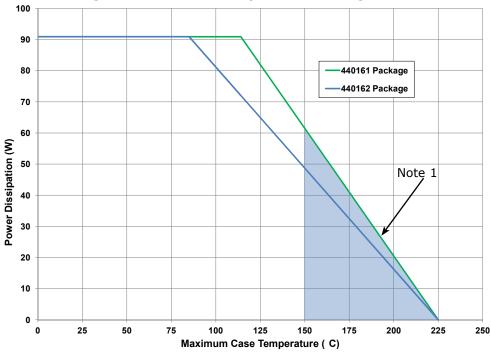
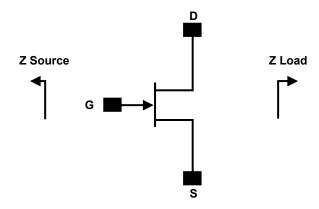


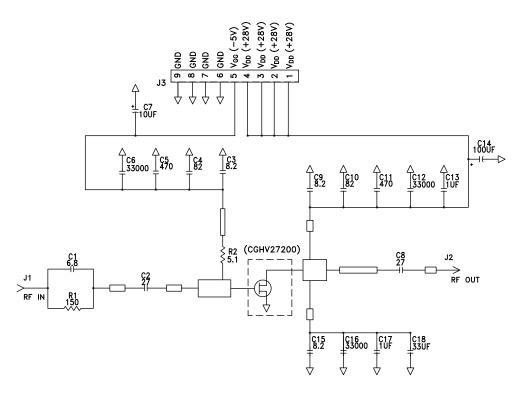
Figure 7. - Intermodulation Distortion Products vs Output Power V_{DD} = 50 V, I_{DQ} = 1.0 A, Tone Spacing = 100 kHz

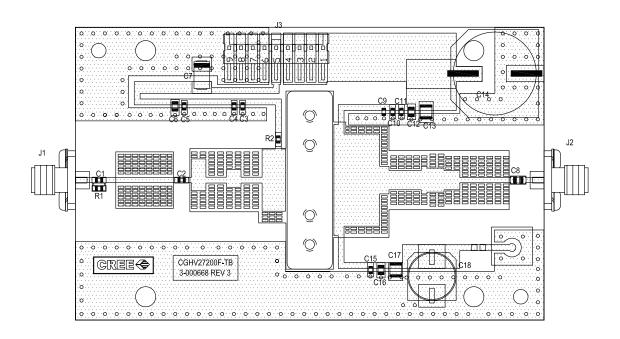

Figure 8. - Power Dissipation Derating Curve

Note 1. Area exceeds Maximum Case Operating Temperature (See Page 2).

Source and Load Impedances

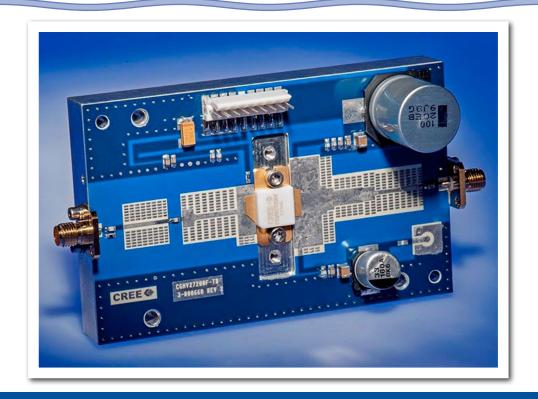


Frequency (MHz)	Z Source	Z Load
2500	11.14 - j14.20	4.66 - j0.69
2550	9.58 - j14.73	4.51 - j0.92
2600	7.99 - j14.81	4.30 - j1.12
2650	6.53 - j14.52	4.02 - j1.27
2700	5.28 - j13.97	3.70 - j1.36

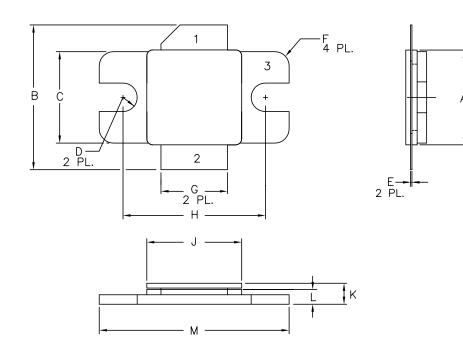

Note¹: V_{DD} = 50 V, I_{DQ} = 1.0 A. In the 440162 package. Note²: Impedances are extracted from CGHV27200-TB demonstration circuit and are not source and load pull data derived from transistor.

CGHV27200-TB Demonstration Amplifier Circuit Schematic

CGHV27200-TB Demonstration Amplifier Circuit Outline

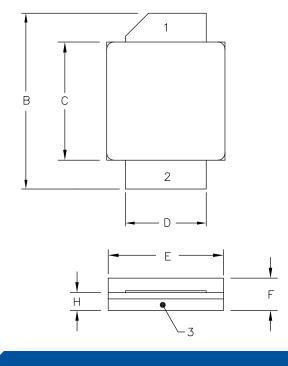


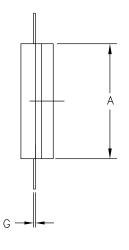
CGHV27200-TB Demonstration Amplifier Circuit Bill of Materials


Designator	Description	Qty
R1	RES, 1/16 W, 0603, 1%, 150 OHMS	1
R2	RES, 1/16 W, 0603, 1%, 5.1 OHMS	1
C1	CAP, 6.2 pF, +/-0.25 pF, 0603, ATC600S	1
C2	CAP, 27 pF, +/-5%, 0603, ATC600S	1
C3,C9,C15	CAP, 8.2 pF, +/-0.25 pF, 0603, ATC600S	3
C4,C10	CAP, 82.0 pF, +/-5%, 0603, ATC600S	2
C5,C11	CAP, 470 pF, 5%, 100 V, 0603, X7R	2
C6,C12,C16	CAP, 33000 pF, 0805, 100 V, X7R	3
C7	CAP, 10 UF, 16V, TANTALUM	1
C8	CAP, 27 pF, +/-5%, 250 V, 0603, ATC600S	1
C13,C17	CAP, 1.0 UF, 100 V, 10%, X7R, 1210	2
C14	CAP, 100 UF, +/-20%, 160V, ELECTROLYTIC	2
C18	CAP, 33 UF, 20%, G CASE	1
J1,J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST	2
J3	CONN, Header, RT> PLZ, 0.1 CEN, LK, 9 POS	1
	PCB, RO4350, 0.020" THK, CGHV27200	1
	2-56 SOC HD SCREW 1/4 SS	4
	#2 SPLIT LOCKWASHER SS	4
	CGHV27200	1

CGHV27200-TB Demonstration Amplifier Circuit

Product Dimensions CGHV27200F (Package Type — 440162)


NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.
- LID MAY BE MISALIGNED TO THE BODY
 OF THE PACKAGE BY A MAXIMUM OF 0.008" IN
 ANY DIRECTION.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	.395	.405	10.03	10.29
В	.580	.620	14.73	15.75
С	.380	.390	9.65	9.91
D	.055	.065	1.40	1.65
E	.004	.006	0.10	0.15
F	.055	.065	1.40	1.65
G	.275	.285	6.99	7.24
Н	.595	.605	15.11	15.37
J	.395	.405	10.03	10.29
K	.129	.149	3.28	3.78
L	.053	.067	1.35	1.70
М	.795	.805	20.19	20.45

PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE

Product Dimensions CGHV27200P (Package Type — 440161)

PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	.395	.407	10.03	10.34
В	.594	.634	15.09	16.10
O	.395	.407	10.03	10.34
D	.275	.285	6.99	7.24
E	.395	.407	10.03	10.34
F	.129	.149	3.28	3.78
G	.004	.006	0.10	0.15
Н	.057	.067	1.45	1.70

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 www.cree.com/rf

Sarah Miller Marketing & Export Cree, RF Components 1.919.407.5302

Ryan Baker Marketing Cree, RF Components 1.919.407.7816

Tom Dekker Sales Director Cree, RF Components 1.919.407.5639