

CGH40120P

120 W, RF Power GaN HEMT

Cree's CGH40120P is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CGH40120P, operating from a 28 volt rail, offers a general purpose, broadband solution to a variety of RF and microwave applications. GaN HEMTs offer high efficiency, high gain and wide bandwidth capabilities making the CGH40120P ideal for linear and compressed amplifier circuits. The transistor is available in a metal-ceramic pill package.

Package Types: 440206 PN: CGH40120P

FEATURES

- Up to 2.5 GHz Operation
- 20 dB Small Signal Gain at 1.0 GHz
- 15 dB Small Signal Gain at 2.0 GHz
- 120 W Typical P_{SAT}
- 70 % Efficiency at P_{SAT}
- 28 V Operation

APPLICATIONS

- 2-Way Private Radio
- Broadband Amplifiers
- Cellular Infrastructure
- Test Instrumentation
- Class A, AB, Linear amplifiers suitable for OFDM, W-CDMA, EDGE, CDMA waveforms

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

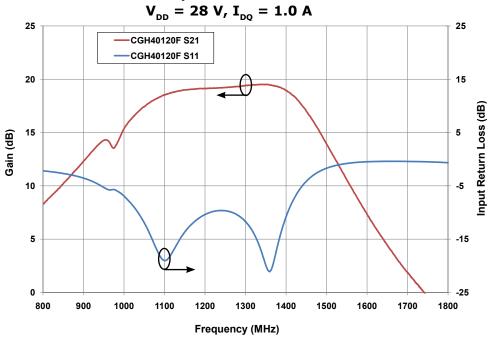
Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	$V_{\scriptscriptstyle DSS}$	84	Volts	25°C
Gate-to-Source Voltage	V_{GS}	-10, +2	Volts	25°C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	Т,	225	°C	
Maximum Forward Gate Current	I_{GMAX}	30	mA	25°C
Maximum Drain Current ¹	I _{DMAX}	12	Α	25°C
Soldering Temperature ²	T _s	245	°C	
Screw Torque	τ	80	in-oz	
Thermal Resistance, Junction to Case ³	$R_{_{\theta JC}}$	TBD	°C/W	85°C
Case Operating Temperature ^{3,4}	T _c	-40, +150	°C	30 seconds

Note:

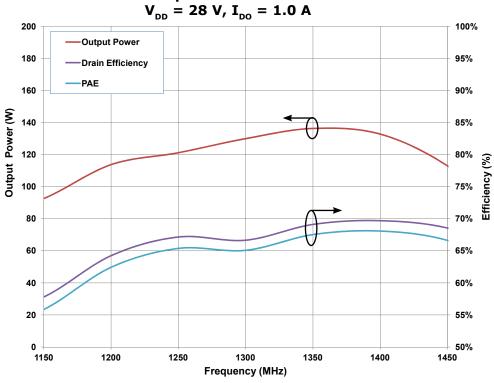
- ¹ Current limit for long term, reliable operation
- ² Refer to the Application Note on soldering at www.cree.com/products/wireless appnotes.asp
- $^{\rm 3}$ Measured for the CGH40120P at P_DISS = 112 W.
- ⁴ See also, the Power Dissipation De-rating Curve on Page 7.

Electrical Characteristics ($T_c = 25$ °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions	
DC Characteristics¹							
Gate Threshold Voltage	$V_{GS(th)}$	-3.8	-3.0	-2.3	V _{DC}	$V_{\rm DS}$ = 10 V, $I_{\rm D}$ = 28.8 mA	
Gate Quiescent Voltage	$V_{GS(\mathtt{Q})}$	-	-2.7	-	V_{DC}	$V_{DS} = 28 \text{ V, } I_{D} = 1.0 \text{ A}$	
Saturated Drain Current ²	$\mathbf{I}_{ extsf{DS}}$	23.2	28.0	-	Α	V_{DS} = 6.0 V, V_{GS} = 2.0 V	
Drain-Source Breakdown Voltage	$V_{\rm BR}$	120	-	-	V_{DC}	$V_{GS} = -8 \text{ V, } I_{D} = 28.8 \text{ mA}$	
RF Characteristics ³ (T _c = 25 °C, F ₀	= 1.3 GHz u	nless otherv	vise noted)				
Power Gain	G_{ss}	-	15.5	-	dB	$V_{DD}=28$ V, $I_{DQ}=1.0$ A, $P_{IN}=35$ dBm, Pulse Width = 100 usec, Duty Cycle = 10%	
Power Output	P _{out}	-	100	-	W	V_{DD} = 28 V, I_{DQ} = 1.0 A, P_{IN} = 35 dBm, Pulse Width = 100 usec, Duty Cycle = 10%	
Drain Efficiency ⁴	η	-	60	-	%	V_{DD} = 28 V, I_{DQ} = 1.0 A, P_{IN} = 35 dBm, Pulse Width = 100 usec, Duty Cycle = 10%	
Output Mismatch Stress	VSWR	-	-	10 : 1	Ψ	No damage at all phase angles, $V_{DD} = 28$ V, $I_{DQ} = 1.0$ A, $P_{OUT} = 100$ W CW	
Dynamic Characteristics							
Input Capacitance	C_{GS}	-	35.3	-	pF	$V_{DS} = 28 \text{ V, } V_{gs} = -8 \text{ V, } f = 1 \text{ MHz}$	
Output Capacitance	C _{DS}	-	9.1	-	pF	$V_{DS} = 28 \text{ V}, V_{gs} = -8 \text{ V}, f = 1 \text{ MHz}$	
Feedback Capacitance	C_{GD}	-	1.6	-	pF	$V_{DS} = 28 \text{ V}, V_{gs} = -8 \text{ V}, f = 1 \text{ MHz}$	

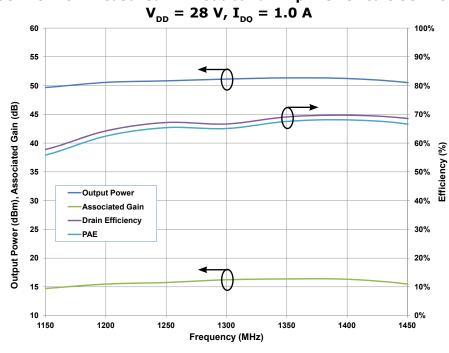

Notes:

- ¹ Measured on wafer prior to packaging.
- ² Scaled from PCM data.
- $^{\scriptscriptstyle 3}$ Measured in CGH40120P-TB.
- 4 Drain Efficiency = P_{out} / P_{pc}

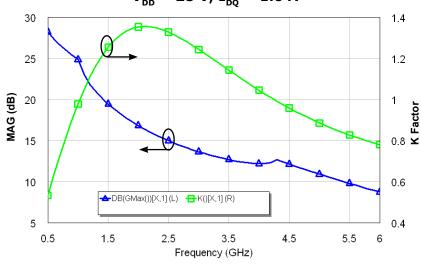


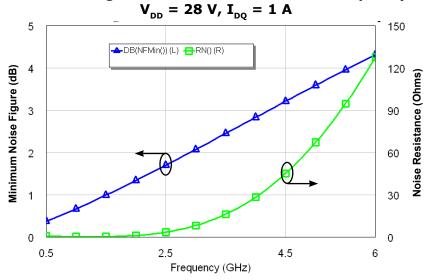
Typical Performance

Gain and Input Return Loss vs Frequency of the CGH40120 measured in Broadband Amplifier Circuit CGH40120-TB


Output Power, Drain Efficiency and PAE vs Frequency of the CGH40120P measured in Broadband Amplifier Circuit CGH40120P-TB

Typical Performance

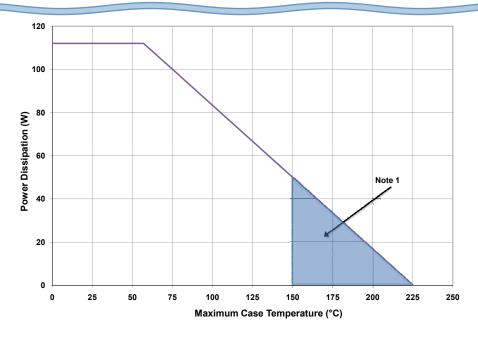

Associated Gain, Output Power, Drain Efficiency and PAE vs Frequency of the CGH40120P measured in Broadband Amplifier Circuit CGH40120P-TB


Typical Performance

Simulated Maximum Available Gain and K Factor of the CGH40120 $V_{DD} = 28 \text{ V}, I_{DO} = 1.0 \text{ A}$

Typical Noise Performance

Simulated Minimum Noise Figure and Noise Resistance vs Frequency of the CGH40120



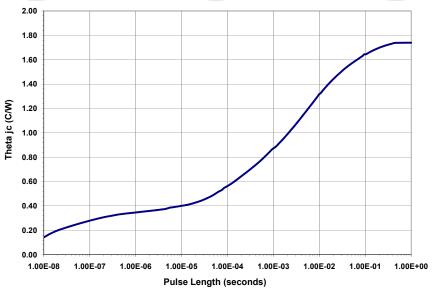
Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1A > 250 V	JEDEC JESD22 A114-D
Charge Device Model	CDM	1 < 200 V	JEDEC JESD22 C101-C

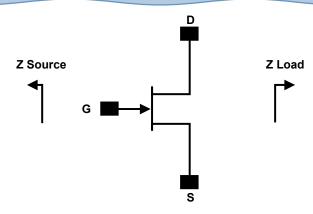


CGH40120P CW Power Dissipation De-rating Curve

Note 1. Area exceeds Maximum Case Operating Temperature (See Page 2).


CGH40120P Transient Power Dissipation De-rating Curve

Note 1. Area exceeds Maximum Case Operating Temperature (See Page 2). Note 2. This transient de-rating curve assumes a 100usec pulse with a 10% duty cycle with no power dissipated during the "off-cycle."


Thermal Resistance as a Function of Pulse Width

Note 1: This heating curve assumes zero power dissipation during the "off" portion of the duty cycle.

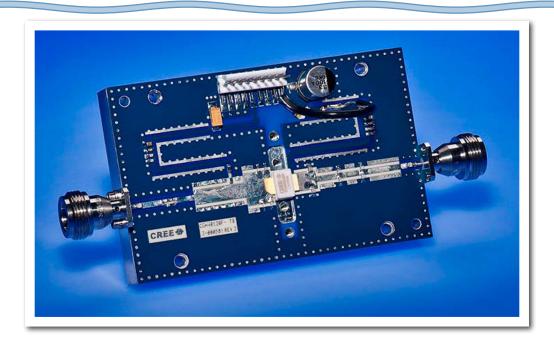
Note 2: This data is for transient power dissipation at 230 W, Duty Cycle = 10 %.

Source and Load Impedances

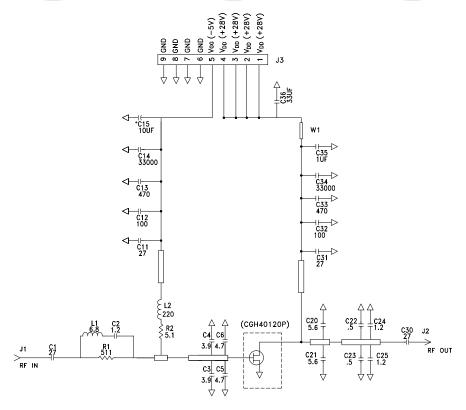
Frequency (MHz)	Z Source	Z Load
500	2 + j3.3	5.14 + j0.04
1000	0.81 + j0.18	4.68 - j0.26
1500	0.75 - j1.56	3.44 - j0.77
2000	0.84 - j3	2.34 - j0.95
2500	1.2 - j4.43	2.7 - j2.56
3000	1.09 - j5.9	3.06 - j3.82

Note 1. $V_{\tiny DD}$ = 28V, $I_{\tiny DQ}$ = 1.0 A in the 440193 package.

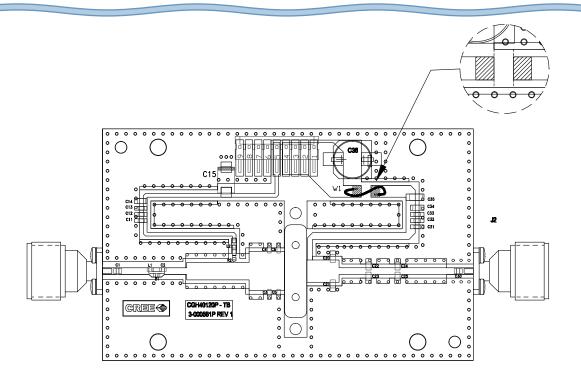
Note 2. Optimized for power gain, P_{SAT} and PAE.


Note 3. When using this device at low frequency, series resistors should be used to maintain amplifier stability.

CGH40120P-TB Demonstration Amplifier Circuit Bill of Materials

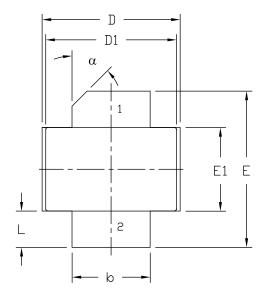

Designator	Description	Qty
C1, C30	CAP, 27 PF +/- 5%, 250V, 0805, ATC 600F	2
C2	CAP, 1.2 pF, +/- 0.1 pF, 0603, ATC 600S	1
C3, C4	CAP, 3.9 pF, +/- 0.1 pF, 0603, ATC 600S	2
C5, C6	CAP, 4.7 pF, +/- 0.1 pF, 0603, ATC 600S	2
C11, C31	CAP, 27pF,+/-5%, 0603, ATC 600S	2
C12, C32	CAP, 100 pF, +/- 5%, 0603, ATC 600S	2
C13, C33	CAP, 470 pF +/- 5%,100 V, 0603, Murata	2
C14, C34	CAP, CER, 33000 pF, 100V, X7R, 0805, Murata	2
C15	CAP, 10 uF, 16V, SMT, TANTALUM	1
C35	CAP, CER, 1.0 uF, 100V, +/- 10%, X7R, 1210	1
C36	CAP, 33 uF, 100V, ELECT, FK, SMD	1
C20, C21	CAP, 5.6 PF +/- 0.1 pF, 0805, ATC 600F	2
C22, C23	CAP, 0.5 PF +/- 0.05 pF, 0805, ATC 600F	2
C24, C25	CAP, 1.2 PF +/- 0.1 pF, 0805, ATC 600F	2
R1	RES, 1/16W, 0603, 511 Ohms (≤5% tolerance)	1
R2	RES, 1/16W, 0603, 5.1 Ohms (≤5% tolerance)	1
L1	IND, 6.8 nH, 0603, L-14C6N8ST	1
L2	IND, FERRITE, 220 OHM, 0805, BLM21PG221SN1	1
J1, J2	CONN, N-Type, Female, 0.500 SMA Flange	2
J3	CONN, Header, RT> PLZ, 0.1 CEN, LK, 9 POS	1
-	PCB, RO4003, Er = 3.38, h = 32 mil	1
Q1	CGH40120F	1

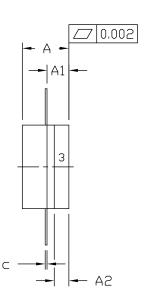
CGH40120P-TB Demonstration Amplifier Circuit



CGH40120P-TB Demonstration Amplifier Circuit Schematic

CGH40120P-TB Demonstration Amplifier Circuit Outline


Typical Package S-Parameters for CGH40120F (Small Signal, $V_{\rm DS}$ = 28 V, $I_{\rm DQ}$ = 1.0 A, angle in degrees)


Frequency	Mag S11	Ang S11	Mag S21	Ang S21	Mag S12	Ang S12	Mag S22	Ang S22
500 MHz	0.961	-177.60	4.19	80.16	0.006	13.42	0.807	-179.57
600 MHz	0.961	-178.85	3.49	77.38	0.006	15.30	0.808	-179.85
700 MHz	0.961	-179.89	2.99	74.72	0.006	17.30	0.810	179.89
800 MHz	0.961	179.22	2.61	72.16	0.007	19.36	0.811	179.66
900 MHz	0.961	178.41	2.32	69.66	0.007	21.47	0.813	179.42
1.0 GHz	0.960	177.67	2.09	67.22	0.007	23.59	0.815	179.18
1.1 GHz	0.960	176.96	1.89	64.83	0.007	25.71	0.817	178.94
1.2 GHz	0.960	176.28	1.73	62.49	0.007	27.81	0.819	178.68
1.3 GHz	0.960	175.63	1.60	60.18	0.007	29.86	0.822	178.41
1.4 GHz	0.960	174.99	1.48	57.92	0.008	31.86	0.824	178.13
1.5 GHz	0.960	174.36	1.38	55.69	0.008	33.80	0.826	177.83
1.6 GHz	0.960	173.73	1.30	53.50	0.008	35.65	0.828	177.52
1.7 GHz	0.960	173.11	1.22	51.35	0.008	37.40	0.830	177.19
1.8 GHz	0.959	172.49	1.15	49.23	0.009	39.06	0.832	176.84
1.9 GHz	0.959	171.86	1.10	47.15	0.009	40.61	0.835	176.47
2.0 GHz	0.959	171.23	1.04	45.09	0.010	42.04	0.837	176.09
2.1 GHz	0.958	170.59	0.99	43.07	0.010	43.36	0.839	175.69
2.2 GHz	0.958	169.95	0.95	41.08	0.011	44.56	0.840	175.28
2.3 GHz	0.957	169.29	0.91	39.12	0.011	45.64	0.842	174.85
2.4 GHz	0.957	168.63	0.88	37.18	0.012	46.60	0.844	174.40
2.5 GHz	0.956	167.95	0.85	35.28	0.012	47.45	0.845	173.93
2.6 GHz	0.956	167.26	0.82	33.39	0.013	48.18	0.847	173.45
2.7 GHz	0.955	166.56	0.79	31.53	0.014	48.80	0.848	172.94
2.8 GHz	0.954	165.84	0.77	29.68	0.014	49.32	0.849	172.43
2.9 GHz	0.953	165.10	0.75	27.86	0.015	49.74	0.850	171.89
3.0 GHz	0.952	164.34	0.73	26.04	0.016	50.05	0.851	171.33
3.2 GHz	0.950	162.75	0.70	22.46	0.018	50.40	0.852	170.17
3.4 GHz	0.948	161.07	0.68	18.91	0.020	50.38	0.852	168.93
3.6 GHz	0.944	159.27	0.66	15.37	0.023	50.02	0.852	167.61
3.8 GHz	0.941	157.33	0.65	11.82	0.025	49.32	0.850	166.19
4.0 GHz	0.936	155.23	0.64	8.23	0.029	48.30	0.848	164.68
4.2 GHz	0.931	152.94	0.64	4.57	0.033	46.94	0.844	163.06
4.4 GHz	0.925	150.43	0.64	0.80	0.037	45.24	0.840	161.32
4.6 GHz	0.917	147.66	0.65	-3.12	0.042	43.18	0.834	159.44
4.8 GHz	0.908	144.59	0.66	-7.23	0.048	40.72	0.826	157.41
5.0 GHz	0.896	141.14	0.68	-11.60	0.055	37.83	0.817	155.20
5.2 GHz	0.883	137.25	0.71	-16.29	0.064	34.45	0.805	152.81
5.4 GHz	0.866	132.84	0.74	-21.37	0.074	30.53	0.791	150.19
5.6 GHz	0.845	127.78	0.78	-26.94	0.086	25.97	0.774	147.33
5.8 GHz	0.820	121.95	0.83	-33.09	0.101	20.69	0.755	144.21
6.0 GHz	0.789	115.17	0.88	-39.95	0.118	14.58	0.731	140.79

Download this s-parameter file in ".s2p" format at http://www.cree.com/products/wireless_s-parameters.asp

Product Dimensions CGH40120F (Package Type — 440206)

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M 1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION.

	INCHES		MILLIMETERS		NOTES
DIM	MIN	MAX	MIN	MAX	
Α	0.125	0.145	3.18	3.68	
A1	0.057	0.067	1.45	1.70	
A2	0.035	0.045	0.89	1.14	
b	0.210	0.220	5.33	5.59	2x
С	0.004	0.006	0.10	0.15	2x
D	0.375	0.385	9.53	9.78	
D1	0.355	0.365	9.02	9.27	
Е	0.400	0.460	10.16	11.68	
E1	0.225	0.235	5.72	5.97	
L	0.085	0.115	2.16	2.92	2×
α	45° REF		45° REF		

PIN 1. GATE

- 2. DRAIN
- 3. SOURCE

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 www.cree.com/wireless

Sarah Miller Marketing & Export Cree, RF Components 1.919.407.5302

Ryan Baker Marketing Cree, RF Components 1.919.407.7816

Tom Dekker Sales Director Cree, RF Components 1.919.407.5639