

1200 V / 285 A / 13.5 m Ω

APE HT-2101-A

High-Temperature Silicon Carbide (SiC) Half-Bridge Power Module

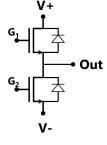
N-Channel DMOS Version

FEATURES

• High temperature: T_{c(max)} = 225 °C

T_{i(max)} = 225 °C

- AS9100:Rev. C-certified manufacturing, traceable throughout value chain
- Ultra-fast switching (<30 ns), low inductance
- High system efficiency
- Flux-free, void-free packaging


• Low profile, small form factor, extremely lightweight

• High reliability

APPLICATIONS

- High-efficiency converters / inverters
- Motor drives
- Aerospace: Military & Commercial
- Smart grid/grid-tie distributed generation

DESCRIPTION

The APE HT-2101-A Silicon Carbide (SiC) half-bridge power module was designed specifically to address the growing demand for higher power densities, higher temperatures, and higher switching frequencies.

COMPANION PARTS

Maximum performance may be obtained through use of the companion high-temperature gate driver, part number APE MTGD2-2011, designed especially for driving the Silicon Carbide module.

Power Module Absolute Maximum Ratings (T _c = 25 °C unless otherwise specified)								
Symbol	Parameter	Condition(s)	Value	Units				
V_{DSS}	Drain-source voltage		1200	V				
V _{GSS}	Gate-source voltage		-5 to 20	V				
		T _c = 25 °C	285					
I_D	Continuous drain current	T _c = 100 °C	TBD	Α				
		T _c = 225 °C	TBD					
I_{DM}	Peak pulsed drain current	Pulse width ≤ 10 μs, duty cycle ≤ 2%	TBD	Α				
P_D	Maximum power dissipated		1600	W				
$T_{c(max)}$	Maximum case temperature ¹		225	°C				
T _{j(min)}	Minimum operating junction temperature		- 50	°C				
T _{j(max)}	Maximum operating junction temperature		225					
T_{stg}	Storage temperature		- 50 to 225	°C				
V	Insulation test voltage	AC, 1 min.	TBD	.,				
V_{isol}	Insulation test voltage	AC, 1 s.	TBD	V				

¹The packaging materials have been qualified at this temperature.

APE HT-2101-A

Power Mo	Power Module Switch Position Electrical Characteristics (T _c = 25 °C unless otherwise specified)							
Compleale	Parameter	Co d'.k.; o (o)	Values			11		
Symbols		Condition(s)	Min.	Typical	Max.	Units		
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	1200	-	-	V		
V	Cata source threshold voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	2.0	2.1	4.0	0 _V		
$V_{GS(th)}$	Gate-source threshold voltage	$V_{DS} = V_{GS}$, $I_{D} = 1$ mA, $T_{j} = 205$ °C	1.0	1.1	3.0] V		
	Due in course looke as a course to	$V_{GS} = -2 \text{ V}, V_{DS} = 1200 \text{ V}$	-	-	200			
I _{DSS}	Drain-source leakage current	$V_{GS} = 2 \text{ V}, V_{DS} = 1200 \text{ V}, T_j = 205 ^{\circ}\text{C}$	-	-	2000	μΑ		
I _{GSS}	Gate-source leakage current	V _{GS} = 20 V, V _{DS} = 0 V	-	-	250	nA		
0	Darin and an analysis and an a	V _{GS} = 20 V, I _D = 75 A	-	13.5	14.5	0		
$R_{DS(on)}$	Drain-source turn-on resistance	$V_{GS} = 20 \text{ V}, I_D = 75 \text{ A}, T_j = 205 ^{\circ}\text{C}$	-	19.5	22.5	mΩ		
C _{iss}	Input capacitance	V _{GS} = 0 V	-	5750	-			
Coss	Output capacitance	V _{DS} = 800 V	-	600	-	рF		
Crss	Reverse transfer capacitance	f = 1 MHz	-	40	-			
t _{d(on)}	Turn-on delay time	V 600 V V 41 20 V	-	36	-			
t _{rv}	Rise time	$V_{DD} = 600 \text{ V}, V_{GS} = -4 \text{ to } 20 \text{ V}$	-	14	-	1		
t _{d(off)}	Turn-off delay time	$I_D = 60 \text{ A}$	-	68	-	ns		
t _{fv}	Fall time	$R_{G(ext)} = 0 \Omega, R_L = 60 \Omega$	-	34	-	1		

Power Mo	Power Module Switch Position Gate Charge Electrical Characteristics (T _c = 25 °C unless otherwise specified)							
Cumbala	Parameter	Condition(s)		l lesite				
Symbols			Min.	Typical	Max.	Units		
Qgs	Gate to source charge	$V_{DD} = 800 \text{ V}, V_{GS} = -4 \text{ to } 20 \text{ V}$	72	-	-			
Q_{gd}	Gate to drain charge	I _D = 75 A	130	-	-	nC		
Q_g	Gate charge total	$R_{G(ext)} = xx \Omega, R_L = xx \Omega$	280	-	-			

Power M	Power Module Diode Position Electrical Characteristics (T _c = 25 °C unless otherwise specified)						
Symbols	Parameter Co	Condition(s)		I Incide			
		Condition(s)	Min.	Typical	Max.	Units	
V	Forward valtage	I _F = 60 A	-	TBD	TBD	V	
V _{FM}	Forward voltage	$I_F = 60 \text{ A}, T_j = 200 ^{\circ}\text{C}$	-	TBD	TBD		
	I _R Reverse current	V _R = 1200 V	-	-	-	μΑ	
IR		V _R = 1200 V, T _j = 200 °C	-	-	-		
Q _c C	Capacitive charge	V _R = 1200 V, I _F = 120 A, di/dt = 7500	_	TBD		nC	
		A/μs	-	עמו	_	nC	

APE HT-2101-A

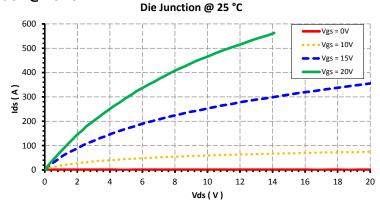
Power Mo	Power Module Thermal Characteristics ² (T _j = 25 °C unless otherwise specified)							
Cumbala	Parameter	Condition(s)	Values			l linite		
Symbols			Min.	Typical	Max.	Units		
$R_{\theta(j-c)}$	FET thermal resistance junction-case			0.125		°C/W		

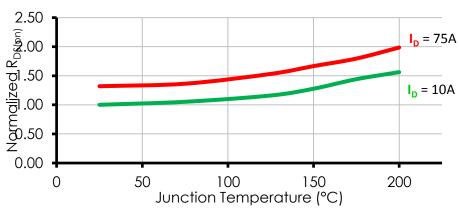
Power Module Mechanical Characteristics (T _j = 25 °C unless otherwise specified)						
Symbols	Downwater	Condition(a)	Values			l loite
	Parameter	Condition(s)	Min.	Typical	Max.	Units
W	Weight			140		g
Ms	Lead frame mounting torque	6-32 steel screw for lead frame, 10- 32 steel screw for baseplate		40		in∙lb

SiC MOSFE	T Electrical Characteristics ³ (T _c = 25 °	C unless otherwise specified)	1			I
Symbols	Parameter	Condition(s)	Values			Units
Зуппоота	raiametei	Condition(s)	Min.	Typical	Max.	Offics
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	1200	-	-	V
$V_{\text{GS(th)}}$	Gate-source threshold voltage	$V_{DS} = V_{GS}$, $I_D = 4.4 \text{ mA}$	1.7	-	3.7	V
I _{DSS}	Zero gate voltage drain current	V _{DS} = 1200 V, V _{GS} = 0 V	-	-	10	μΑ
	Gate-source leakage current	$V_{GS} = 22 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	100	
I _{GSS}		$V_{GS} = -6 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	-100	nA
D	Duning and the second s	V _{GS} = 18 V, I _D = 10 A	-	90	120	mΩ
$R_{DS(on)}$	Drain-source turn-on resistance	V_{GS} = 18 V, I_D = 10 A, T_c = 150 $^{\circ}$ C	-	130	170	
g fs	Transconductance	$V_{DS} = 10 \text{ V}, I_{D} = 10 \text{ A}$	-	4	-	S
C _{iss}	Input capacitance	V _{GS} = 0 V	-	2200	-	pF
Coss	Output capacitance	$V_{\text{GS}} = 0 \text{ V}$ $V_{\text{DS}} = 25 \text{ V}$	-	381	-	рF
C _{rss}	Reverse transfer capacitance	f = 1 MHz	-	46	-	pF
t _{d(on)}	Turn-on delay time		-	29	-	ns
t _{rv}	Rise time		-	31	-	ns
t _{d(off)}	Turn-off delay time		-	75	-	ns
t _{fv}	Fall time	$V_{DD} = 300 \text{ V}, V_{GS} = 18 \text{ V}$	-	19	-	ns
E _{on}	Turn-On switching loss	$ I_D = 10 \text{ A}$ $ R_{G(ext)} = 0 \Omega, R_L = 30 \Omega$	-	-	-	μJ
		_	-	-	-	-
E_{off}	Turn-Off switching loss		-	-	-	μЈ
R _G	Internal gate resistance		-	-	-	Ω

² FET thermal resistance junction-case is calculated measured with a 105 °C coldplate and full power distributed through the FETs. The thermal properties typically improve at lower temperatures.

³ Obtained from Rohm Co., Ltd., S2101 Rev. 1 datasheet

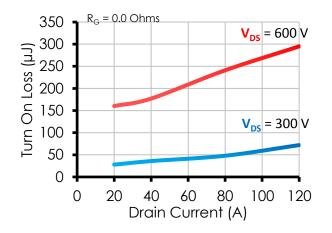

APE HT-2101-A

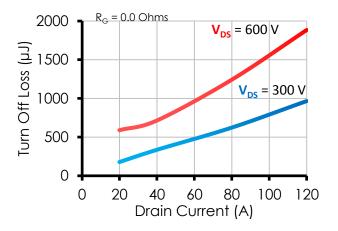

SiC MOSF	SiC MOSFET Inverse Body Diode Electrical Characteristics ⁴ (T _c = 25 °C unless otherwise specified)							
Symbols	2	0 100 /)	Values					
	Parameter	Condition(s)	Min.	Typical	Max.	Units		
V_{SD}	Diode forward voltage	V _{GS} = -3 V, I _F = 10 A	-	4.5	-	V		
t _{rr}	Reverse recovery time	V _{GS} = 0 V, I _F = 10 A	-	TBD	-	ns		
Q _{rr}	Reverse recovery charge	V _R = 800 V	-	120	-	nC		
I _{rrm}	Peak reverse recovery current	di _F /dt = 400 A/μs	-	TBD	-	Α		

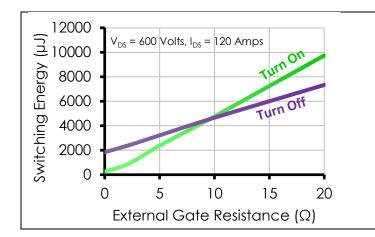
SiC MOSF	SiC MOSFET Gate Charge Electrical Characteristics ⁴ (T _c = 25 °C unless otherwise specified)							
Symbols	Downston	Constitution (a)		Values		l loite		
	Parameter Condition(s)	Condition(s)	Min.	Typical	Max.	Units		
Q _{gs}	Gate to source charge	V _{DD} = 600 V, V _{GS} = 18 V	-	30	-			
Q _{gd}	Gate to drain charge	I _D = 10 A	-	30	-	nC		
Qg	Gate charge total	$R_{G(ext)} = 10 \Omega$, $R_L = 60 \Omega$	-	98	-			

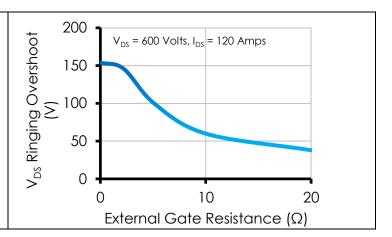
TYPICAL PERFORMANCE CURVES

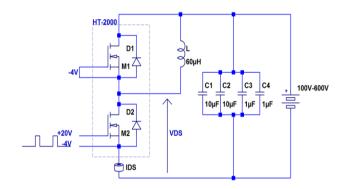
Die Junction @ 25 °C

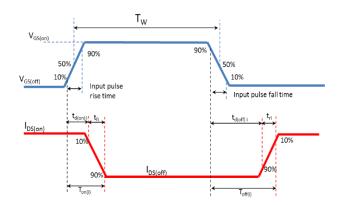

Typical Normalized On Resistance

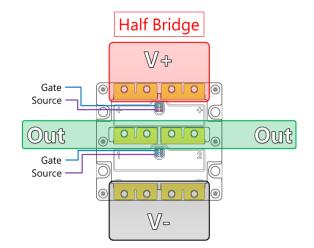

Normalized to an on resistance value of 23.1 m Ω (I_D = 10 A, T_j =25 °C)

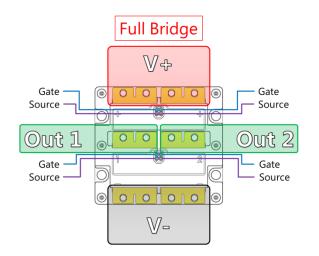


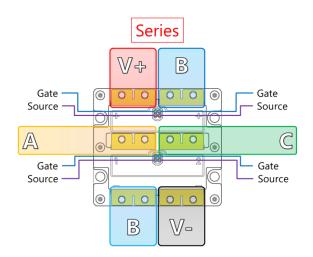

APE HT-2101-A


Typical Switching Losses



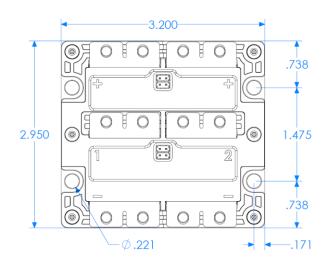



Energy values obtained using companion gate driver (T_{amb} = 25 °C).



PRELIMINARY APE HT-2101-A

HALF- AND FULL-BRIDGE CONNECTIONS


MOUNTING DIMENSIONS

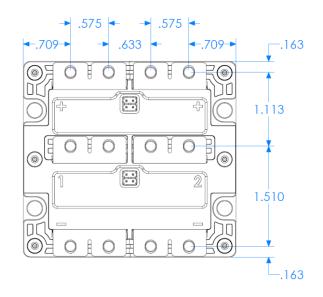
All dimensions are listed in inches

#10-32 bolts are recommended for mounting

A torque of 40 in·lb is recommended

CAD models are available at www.apei.net

APE HT-2101-A


POWER CONTACT DIMENSIONS

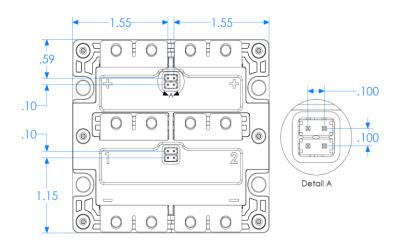
All dimensions are listed in inches

#6-32 bolts required for the power contacts

A torque of 40 in·lb is recommended

CAD models available at www.apei.net

GATE DRIVE CONNECTIONS


All dimensions are listed in inches

Receptacles accept pins 0.015" to 0.025" in diameter*

CAD models available at www.apei.net

Pin receptacle provided by Mill Max Mfg. Corp. Part No. 0132-0-15-15-30-27-04

Refer to their website for a selection of mating pins

PRELIMINARY APE HT-2101-A

DISCLAIMER

ALL PRODUCT, PRODUCT SECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION, DESIGN OR OTHERWISE.

Arkansas Power Electronics International, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "APEI"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

All product data sheets, product manuals and any other product related documentation, and all APEI products, courtesy samples and services are subject to APEI's Standard Terms and Conditions available online at http://www.apei.net/termsandconditions.pdf.

ALL APEI PRODUCTS, PROTOTYPES AND ANY OTHER DEVICES MADE BY APEI SHALL BE TREATED AS ENGINEERING SAMPLES AND AS SUCH APEI DOES NOT ACCEPT ANY PRODUCT LIABILITY, CLAIMS OR DAMAGES OR FUTURE OBLIGATIONS TO SUPPLY. THE CONTENTS DISCLOSED IN ANY DATASHEET AND ALL OF APEI'S PRODUCTS, PROTOTYPES AND OTHER DEVICES SOLD OR PROVIDED BY APEI ARE "AS-IS" WITH NO WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED. APEI DOES NOT WARRANT THAT ITS ENGINEERING SAMPLES ARE FULLY VERIFIED, TESTED, OR WILL OPERATE IN ACCORDANCE WITH ANY DATA SHEET SPECIFICATIONS. APEI DISCLAIMS ANY OBLIGATIONS FOR TECHNICAL SUPPORT AND BUG FIXES. APEI SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION DIRECT, INDIRECT, INCIDENTAL, SPECIAL, RELIANCE, PUNITIVE, STATUTORY OR CONSEQUENTIAL DAMAGES ARISING FROM OR IN CONNECTION WITH THE CONTENTS OF ANY PRODUCT DATASHEET OR THE USE, INSTALLATION, OR IMPLEMENTATION OF ENGINEERING SAMPLES IN ANY MANNER WHATSOEVER, EVEN IF SELLER HAS BEEN ADVISED OF THE POSSIBILITY THEREOF. APEI MAKES NO REPRESENTATION THAT ITS ENGINEERING SAMPLES PROVIDE ANY PARTICULAR FUNCTIONALITY, OR THAT ITS ENGINEERING SAMPLES WILL MEET THE REQUIREMENTS OF A PARTICULAR USER APPLICATION. APEI DOES NOT WARRANT THAT ITS ENGINEERING SAMPLES ARE ERROR-FREE, NOR DOES APEI MAKE ANY OTHER REPRESENTATIONS OR WARRANTIES, WHETHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, INCLUDING WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

APEI'S PRODUCTS AND PROTOTYPES ARE ENGINEERING SAMPLES AND ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, FAULT TOLERANT OR FOR USE IN ANY APPLICATION THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, "CRITICAL APPLICATIONS"), SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE OR AIRCRAFT, APPLICATIONS RELATED TO THE DEPLOYMENT OF AIRBAGS, OR ANY OTHER CRITICAL APPLICATIONS. APEI SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION DIRECT, INDIRECT, INCIDENTAL, SPECIAL, RELIANCE, PUNITIVE OR CONSEQUENTIAL DAMAGES IN ANY MANNER WHATSOEVER, ARISING FROM OR IN CONNECTION WITH THE USE OF ITS PRODUCTS, SAMPLES OR PROTOTYPES IN CRITICAL APPLICATIONS, EVEN IF APEI HAS BEEN ADVISED OF THE POSSIBILITY THEREOF.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of APEI.

ORDERING INSTRUCTIONS

An order for one or more parts can be initiated by issuing a purchase order to APEI, Inc. Please e-mail or fax your purchase order to sales@apei.net or +1.866.515.6604, respectively.

APEI, Inc. 535 W. Research Center Blvd. Fayetteville, AR 72701 Phone: 479.443.5759 / Fax: 866.515.6604

www.apei.net
Copyright © 2013 APEI, Inc.
All rights reserved.