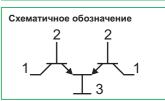
Кремниевый мощный биполярный СВЧ транзистор


Технические данные

Описание

- Кремниевый n-p-n генераторный СВЧ широкополосный транзистор с общим эмиттером и балластными резисторами в цепи эмиттера
- Герметизирован в металлокерамическом корпусе КТ-44
- Золотая металлизация

KT-44

Основное назначение

■ Транзисторы предназначены для работы в двухтактных усилителях мощности в полосе частот 390-840 МГц в схеме с общим эмиттером

Основные характеристики

- Выходная мощность Рвых = 15 Вт
- Напряжение питания Uп = 28 В
- Рабочая частота f = 390, 840 МГц
- Коэффициент усиления по мощности КуР ≥ 6
- КПД коллектора ηк ≥ 40 %

Предельно допустимые электрические режимы эксплуатации

Параметр	Обозначение	Значение	Единица измерения	Примечание
Максимально допустимое обратное постоянное напряжение эмиттер-база	U эь max	3	В	1
Максимально допустимое постоянное напряжение коллектор-эмиттер (Rэь=10 Ом)	U кэк max	50	В	1
Максимально допустимая средняя рассеиваемая мощность коллектора в непрерывном динамическом режиме	Рк, ср тах	50	Вт	2
Максимально допустимый постоянный ток коллектора	Ік тах	4	Α	3
Максимально допустимая температура p-n перехода	tп max	200	°C	
Верхняя частота рабочего диапазона	fвд	840	МГц	
Нижняя частота рабочего диапазона	f нд	390	МГц	
Диапазон рабочих температур		-60 до +125	°C	
Тепловое сопротивление переход-корпус	Rт п-к	3,2	°С/Вт	

Примечание 1 - для всего диапазона рабочих температур

2 - при температуре корпуса tк≤40°C (при температуре корпуса от +40°C до +125°C

Рк, ср тах линейно снижается по закону: Рк, ср тах = (200-tk)/Rт п-к)

3 - для всего диапазона рабочих температур при условии, что максимально допустимая средняя рассеиваемая мощность коллектора в динамическом режиме не превышает предельного значения

НИИЭТ

Электрические параметры транзисторов при приемке и поставке

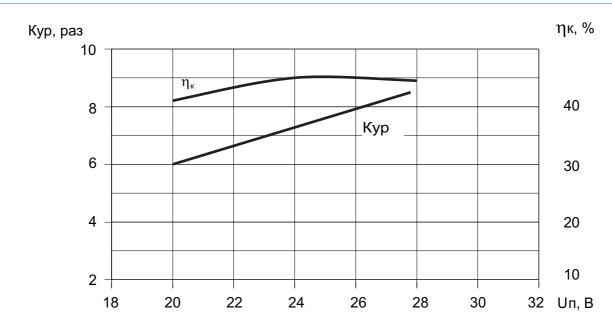
Параметр	Обозначение	Режим измерения	Не менее	He более	Единица измерения	Температура среды (корпуса), °С
Обратный ток коллектор-эмиттер	Ікэк	Uкэ=50 B, Rэь=10 Ом	_	20	мА	25
			_	40	мА	125
			-	40	мА	-60
Обратный ток эмиттера	Іэьо	Uэь=3 В	-	15	мА	25
			-	30	мА	125
			-	30	мА	-60
Модуль коэффициента передатока на высокой частоте	ачи lh ₂₁ 9l	f=300 МГц, Uкэ=10 B, Iк=2,5 A	2	-	-	25
Выходная мощность	Рвых	f=390¹,650¹,615²,840² МГц, Uп=28 В,Рвх≤2,5 Вт, Iк нач=2x0,05 А	15	-	Вт	tк≤40
Коэффициент усиления по мощности	Кур	f=390¹,650¹,615²,840² МГц, Uп=28 В, Рвых=15 Вт,	6	-	-	tκ≤40
Коэффициент полезного действия коллектора	ηк	Iк нач=2х0,05 А	40	-	%	tκ≤40

Примечание: Приведены суммарные значения параметров Ікэк, Іэьо двух параллельно включенных кристаллов транзистора, значение |h219| для каждого кристалла транзистора

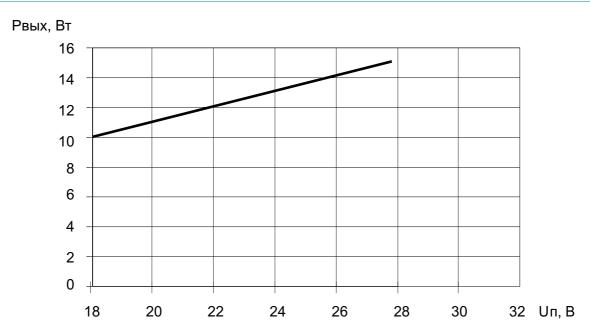
Справочные электропараметры

Параметр	Обозначение	Режим измерения	Не менее	Не более	Единица измерения
Критический ток коллектора	Ікр	f=300 Мгц, Uкэ=10 B, t _c =25±10°C	3	-	Α
Постоянная времени цепи обратной связи на высокой частоте	τκ	Uкб=5 B, f=5 МГц, Iэ=0,5 A, tշ=25±10°C	-	12	пс
Емкость коллекторного перехода	Ск	f=30 МГц, Uп=28 В, t₀=25±10°С	-	37	пФ
Емкость эмиттерного перехода	Сэ	UэБ=0 В, t₀=25±10°С	190	260	пФ
Максимально допустимый коэффициент стоячей волны по напряжению	Кст Umax	Uп=28 В, tк≤(50±2)°С, f=840 МГц	-	5	-

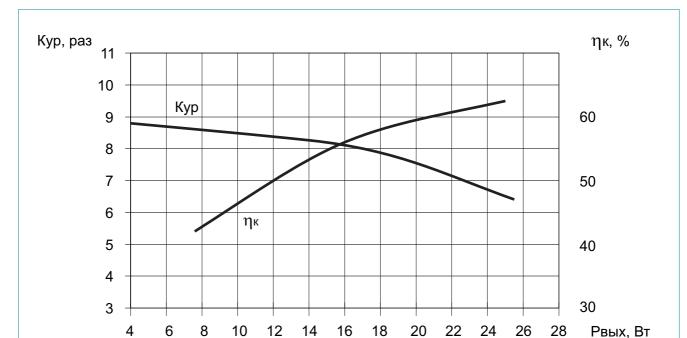
Примечание: Приведены значения параметра Ікр отдельно для каждого транзистора сборки;


Кст Umax при изменении фазы коэффициента отражения нагрузки в пределах от 0 до 360° при кратковременном рассогласовании (до 3 с) и уровне мощности на согласованной нагрузке не более 15 Вт

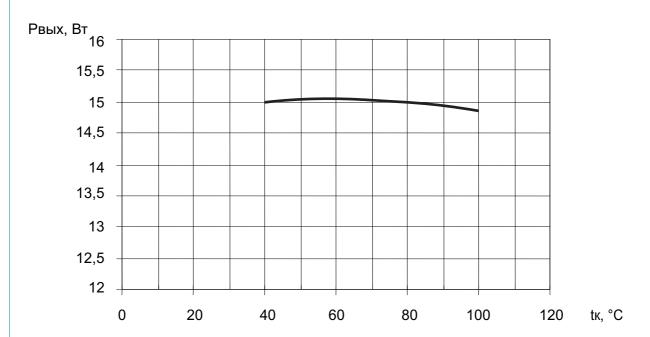
^{1 -} усилитель с рабочей полосой (390-650) МГц 2 - усилитель с рабочей полосой (615-840) МГц



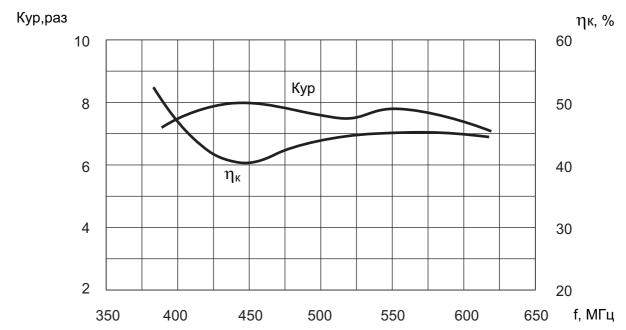
Типовые зависимости электрических параметров



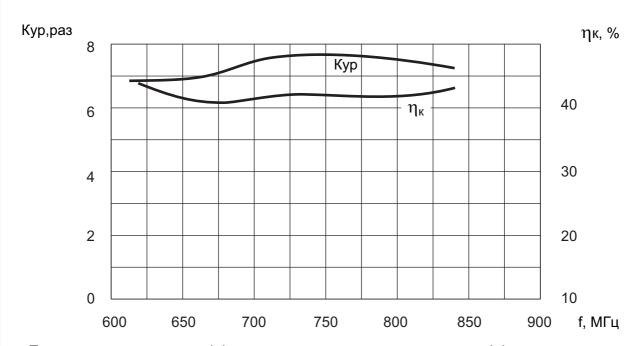
Типовые зависимости коэффициента усиления по мощности и коэффициента полезного действия коллектора от напряжения питания (PBX = const, $f = 840 M\Gamma$ ц, IK HAY = 2x0,05 A)



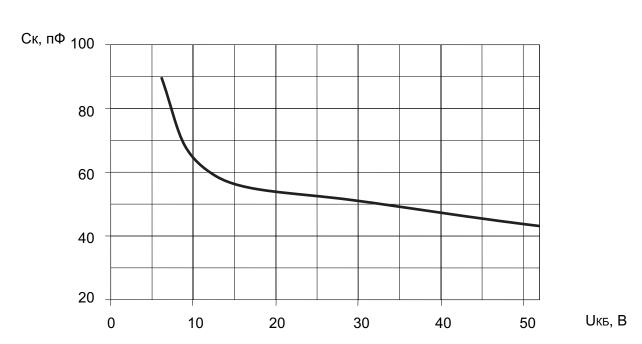
Типовая зависимость выходной мощности от напряжения питания (Pbx = const, $f = 840 M\Gamma u$, Ik hav = 2x0,05 A)



Типовые зависимости коэффициента усиления по мощности и коэффициента полезного действия коллектора от выходной мощности (Uп = 28 B, f = 840 МГц, lк нач=2x0,05 A)

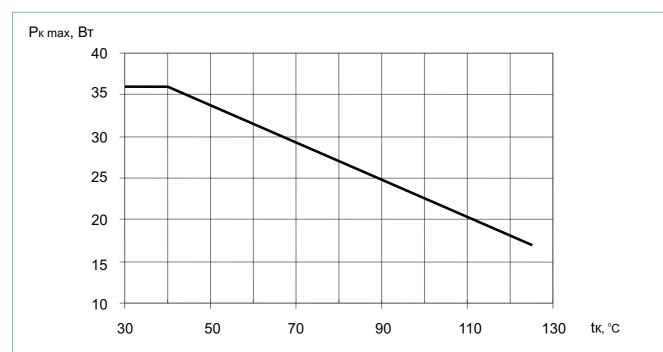


Типовая зависимость выходной мощности от температуры корпуса (Pax = const, Un = 28 B, $f = 840 M\Gamma u$, Ik hau = 2x0,05 A)


Типовые зависимости коэффициента усиления по мощности и коэффициента полезного действия коллектора от частоты при tк≤40°C (Uп=28 B, Iк нач=2x0,05 A)

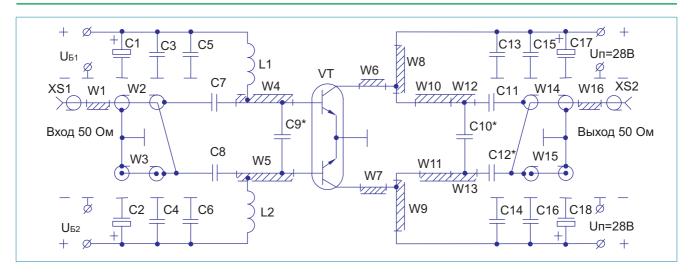
Типовые зависимости коэффициента усиления по мощности и коэффициента полезного действия коллектора от частоты при tк≤40°C (Uп=28 B, Iк нач=2x0,05 A)

Технические данные



Типовая зависимость емкости коллекторного перехода от постоянного напряжения коллектор-база при tc= (25±10)°С на частоте f=30 МГц

Область безопасной работы в статическом режиме, полученная косвенным методом (tп≤200°C, tк≤40°C)



Типовая зависимость максимально допустимой постоянной рассеиваемой мощности коллектора от температуры корпуса (tпер≤200°C)

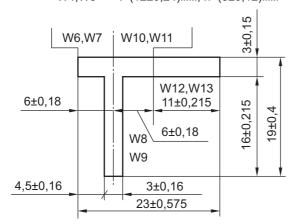
Схема электрическая принципиальная измерительного усилителя для проверки параметров Рвых, Кур, η_кв режима АБ на частотах 390-650 МГЦ

Конденсаторы

C1,C2,C17,C18 K50-35-47 $MK\Phi-63B\pm20\%$ C3,C4,C15,C16 KM6-0,47 $MK\Phi\pm10\%$ C5,C6,C13,C14 K10-57-300 $M\Phi\pm10\%$ C7,C8,C11,C12 K10-57-27 $M\Phi\pm10\%$ $C9^*,C10^*$ K10-57-3,3 $M\Phi\pm10\%$

Дроссели

L1,L2 3 витка провода ПЭВ-2-0,51, внутренний диаметр намотки 2мм±0,12мм


Линии СВЧ и элементы

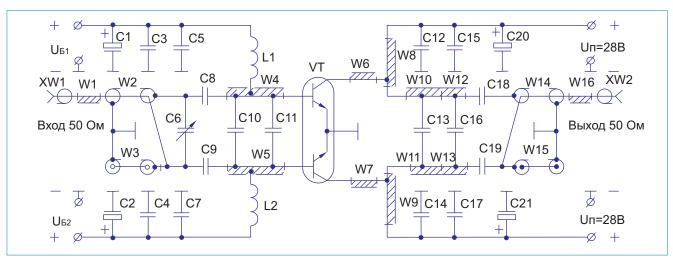
Несимметричная полосковая линия, материал ФАФ-4-1:

W1,W16 $I=(20\pm0,28)$ mm, $h=(3\pm0,12)$ mm

W2,W4 I=(60±0,4)мм коаксиального кабеля PK-50-1,5-22

W3,W15 $I=(60\pm0,4)$ мм коаксиального кабеля PK-50-1,5-22 с незадействованной центральной жилой W4,W5 $I=(12\pm0,24)$ мм, h=(3 $\pm0,12$)мм

Разъемы


XS1,XS2 Переходы коаксиально-полосковые Э2-116/2

VT - измеряемая транзисторная сборка

* Подбирают при регулировании

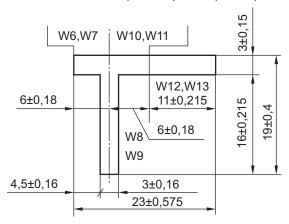
Схема электрическая принципиальная измерительного усилителя для проверки параметров Рвых, Кур, η_кв режиме класса АБ на частотах 615-840 МГЦ

Конденсаторы

Дроссели

L1,L2 3 витка провода ПЭВ-2-0,51, внутренний диаметр намотки 2мм±0,12мм

Линии СВЧ и элементы


Несимметричная полосковая линия, материал ФАФ-4-1:

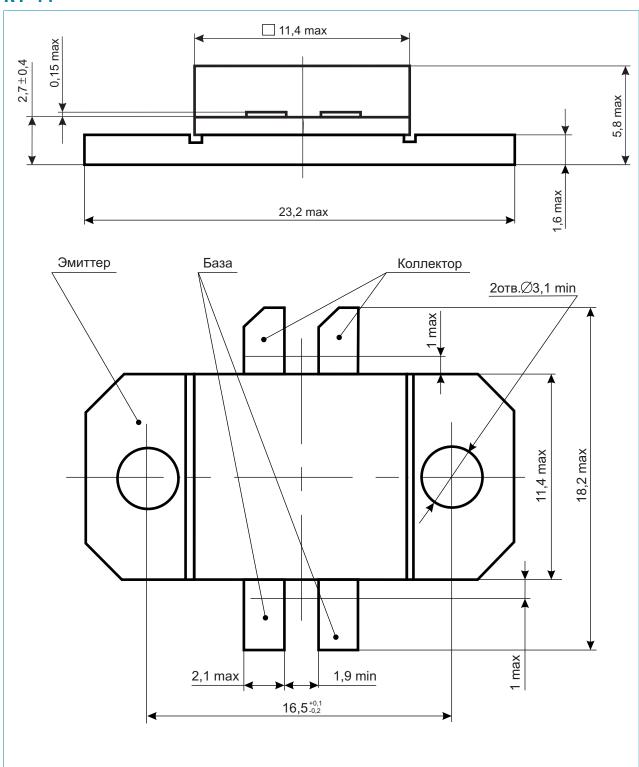
W1,W16 $I=(20\pm0,28)$ MM, $h=(3\pm0,12)$ MM

W2,W4 I=(60±0,4)мм коаксиального кабеля РК-50-1,5-22

W3,W15 I=(60±0,4)мм коаксиального кабеля PK-50-1,5-22 с незадействованной центральной жилой

W4,W5 $I=(12\pm0,24)$ mm, $h=(3\pm0,12)$ mm

Разъемы


XS1,XS2 Переходы коаксиально-полосковые Э2-116/2

VT - измеряемая транзисторная сборка

Габаритный чертеж корпуса

KT-44

