
### Описание

- Кремниевый эпитаксиально-планарный n-p-n СВЧ транзистор
- Герметизирован в металлокерамическом корпусе КТ-4-2
- Золотая металлизация

# KT-4-2





### Основное назначение

 Транзисторы предназначены для работы в схемах автогенераторов, умножителей частоты, усилителей мощности аппаратуры в диапазоне частот 100-400 МГц

### Основные характеристики

- Выходная мощность Рвых = 3 Вт
- Напряжение питания Uп = 28 В
- Рабочая частота f = 400 МГц
- Коэффициент усиления по мощности К<sub>УР</sub> ≥ 2,5
- КПД коллектора ηк ≥ 40 %

# Предельно допустимые электрические режимы эксплуатации

| Параметр                                                                                          | Обозначени              | е Значение  | Единица<br>измерения | Примечание |
|---------------------------------------------------------------------------------------------------|-------------------------|-------------|----------------------|------------|
| Максимально допустимое постоянное<br>напряжение коллектор-база                                    | <b>U</b> кь <b>ma</b> x | 65          | В                    | 1,2        |
| Максимально допустимое постоянное напряжение коллектор-эмиттер (Rэь≤100 Ом)                       | <b>U</b> кэк <b>max</b> | 65          | В                    | 1,2        |
| Максимально допустимое постоянное<br>напряжение эмиттер-база                                      | <b>U</b> эь <b>max</b>  | 4           | В                    | 1          |
| Максимально допустимая средняя рассеиваемая мощность коллектора в непрерывном динамическом режиме | Рк, ср тах              | 7           | Вт                   | 2          |
| Максимально допустимый постоянный ток коллектора                                                  | Ік тах                  | 0,8         | Α                    | 1          |
| Максимально допустимый импульсный ток коллектора                                                  | Ік,и тах                | 1,5         | Α                    | 1          |
| Максимально допустимый постоянный ток базы                                                        | Iь max                  | 0,2         | Α                    | 1          |
| Тепловое сопротивление переход-корпус                                                             | Rт п-к                  | 15          | °С/Вт                |            |
| Максимально допустимая температура р-п перехода                                                   | tп max                  | 185         | °C                   |            |
| Верхняя частота рабочего диапазона                                                                | fвд                     | 400         | МГц                  |            |
| Нижняя частота рабочего диапазона                                                                 | f нд                    | 100         | МГц                  |            |
| Диапазон рабочих температур                                                                       |                         | -60 до +125 | °C                   |            |



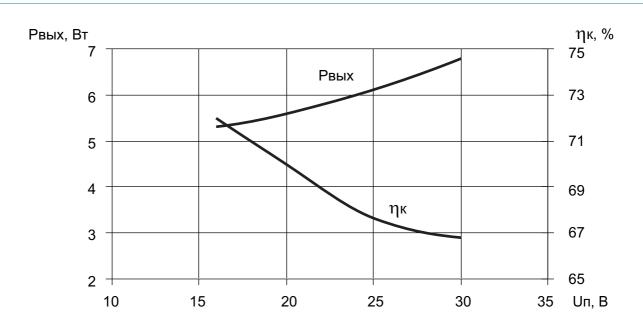


### Предельно допустимые электрические режимы эксплуатации

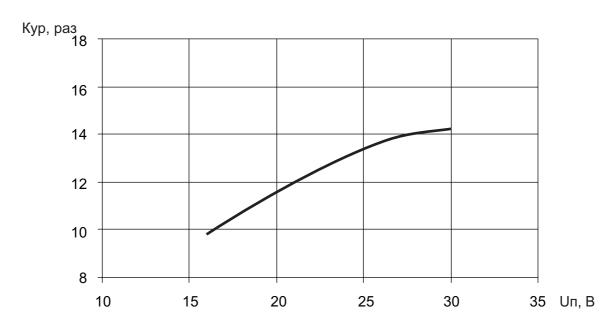
Примечания 1 - для всего диапазона рабочих температур при условии, что рассеиваемая мощность не превышает предельной

- 2 допускается пиковое значение напряжения до 75 В при работе в режиме генератора мощности на частоте не ниже 100 МГц
- 3 при температуре корпуса tк≤80°C (при температуре корпуса от +80°C до +125°C Рк, ср тах линейно снижается по закону: Рк, ср тах = (185-tк)/Rт п-к)

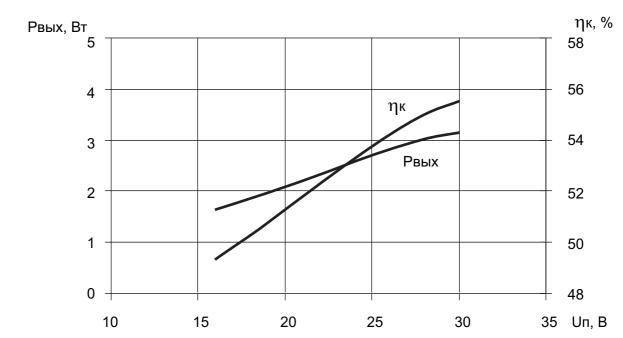
### Электрические параметры транзисторов при приемке и поставке


| Параметр                                          | Обозначение             | Режим измерения                   | Не<br>менее | Не<br>более | Единица<br>измерения | Температура<br>среды<br>(корпуса), °С |
|---------------------------------------------------|-------------------------|-----------------------------------|-------------|-------------|----------------------|---------------------------------------|
| Обратный ток<br>коллектор-эмиттер                 | Ікэк                    |                                   | -           | 1           | мА                   | 25                                    |
|                                                   |                         |                                   | -           | 2           | мА                   | 125                                   |
|                                                   |                         |                                   | -           | 2           | мА                   | -60                                   |
| Обратный ток эмиттера                             | Іэьо                    | Uэб=4 B                           | -           | 100         | мА                   | 25                                    |
|                                                   |                         |                                   | -           | 200         | мА                   | 125                                   |
|                                                   |                         |                                   | -           | 200         | мА                   | -60                                   |
| Модуль коэффициента передатока на высокой частоте | ачи Ih <sub>21</sub> 9I | f=100 МГц, Uкэ=28 В,<br>Iк=200 мА | 3,5         | -           | -                    | 25                                    |
| Коэффициент усиления по мощности                  | Кур                     | f=400 МГц, Uкэ=28 В,<br>Рвых=3 Вт | 2,5         | -           | -                    | tκ≤40                                 |
| Коэффициент полезного<br>действия коллектора      | ηк                      |                                   | 40          | -           | %                    | tκ≤40                                 |

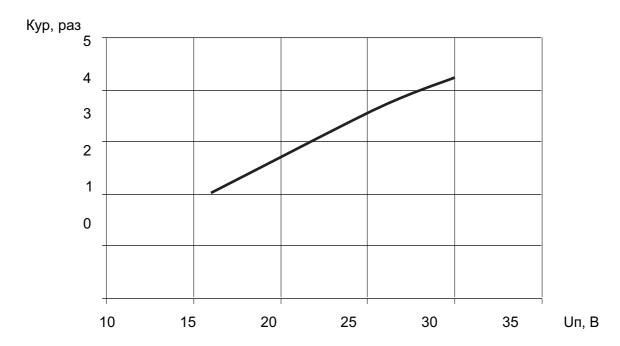
## Справочные электропараметры


| Параметр                                                 | Обозначение     | Режим измерения                            | Не<br>менее | Тип. | Не<br>более | Единица<br>измерения |
|----------------------------------------------------------|-----------------|--------------------------------------------|-------------|------|-------------|----------------------|
| Критический ток коллектора                               | Ікр             | f=100 Мгц,<br>Uкэ=28 B, tշ=25±10°С         | 1,0         | 1,35 | 1,5         | Α                    |
| Постоянная времени цепи обратной связи на высокой частот | е тк            | Uкь=10 В, f=5 МГц,<br>Iэ=30 мА, t₀=25±10°C | -           | -    | 15          | пс                   |
| Емкость коллекторного перехода                           | Ск              | f=5 МГц, Uкэ=28 В                          | -           | -    | 12          | пФ                   |
| Емкость эмиттерного перехода                             | Сэ              | f=5 МГц, Uэь=0 В                           | 80          | 90   | 125         | пФ                   |
| Граничное напряжение                                     | <b>U</b> кэо гр | Iкэ=200 мA                                 | 40          | 60   | -           | В                    |

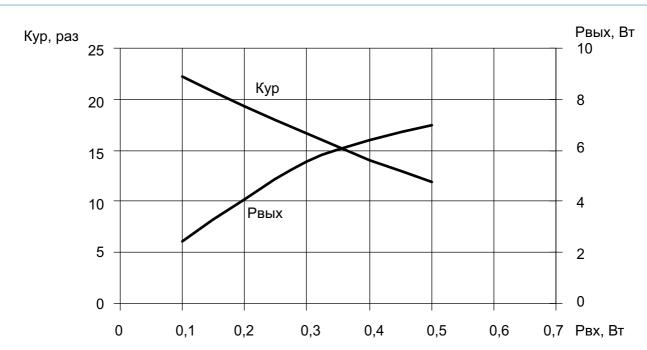



# Типовые зависимости электрических параметров

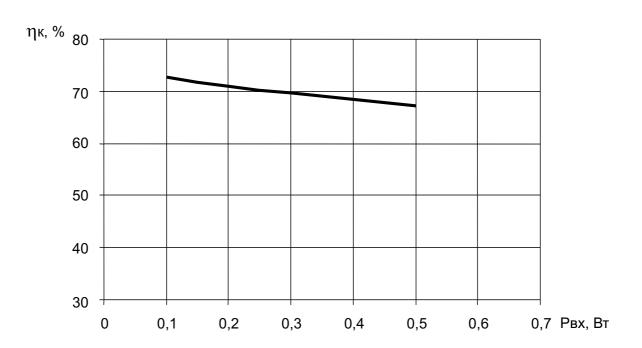



Типовые зависимости выходной мощности и коэффициента полезного действия коллектора от напряжения питания (Pвх = const, f = 100 МГц)



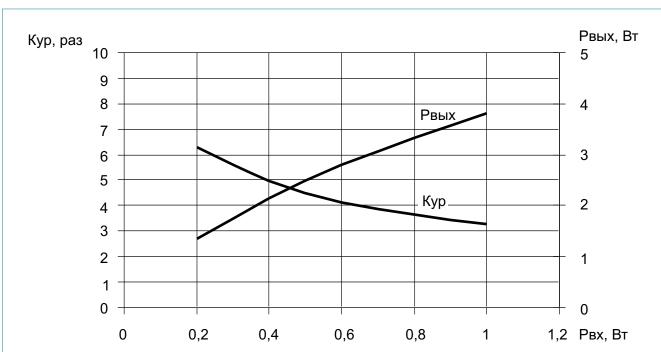

Типовая зависимость коэффициента усиления по мощности от напряжения питания (Pex = const,  $f = 100 M\Gamma u$ )



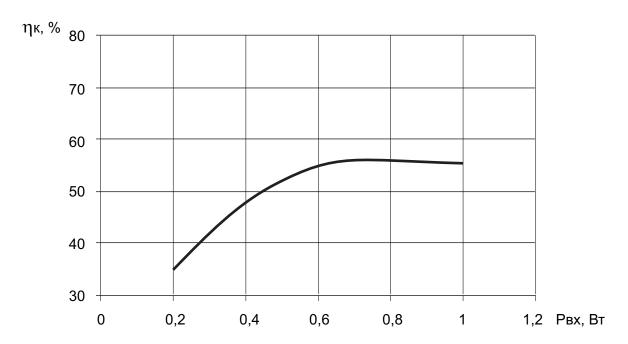

Типовые зависимости выходной мощности и коэффициента полезного действия коллектора от напряжения питания (Pвх = const, f = 400 МГц)



Типовая зависимость коэффициента усиления по мощности от напряжения питания ( $PBX = const, f = 400 M\Gamma u$ )



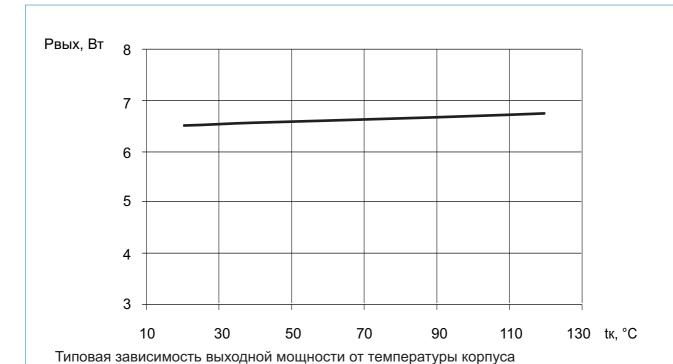

Типовые зависимости выходной мощности и коэффициента усиления по мощности от входной мощности (Uп = 28 B, f = 100 МГц,  $t\kappa$ ≤40°C)



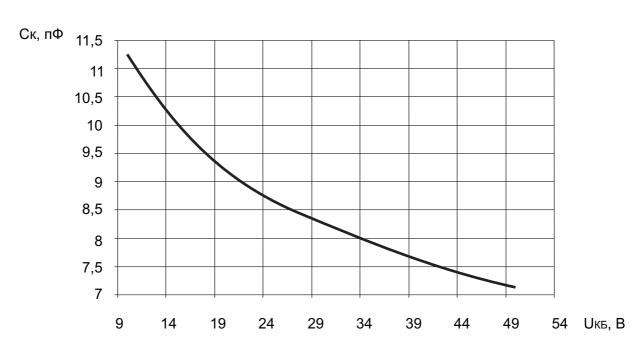

Типовая зависимость коэффициента полезного действия коллектора от входной мощности (Uп = 28 B, f = 100 МГц, tк≤40°C)

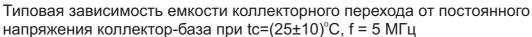


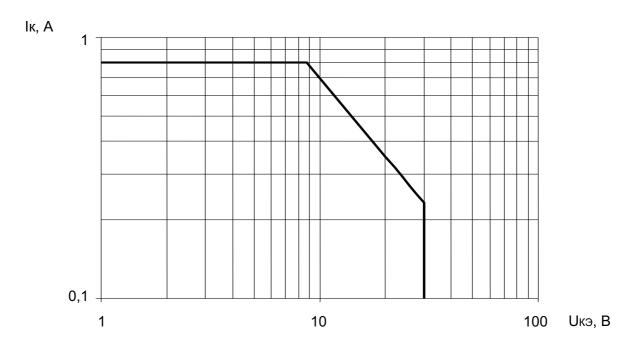



Типовые зависимости выходной мощности и коэффициента усиления по мощности от входной мощности (Uп = 28 B, f = 400 МГц,  $t\kappa$ ≤40°C)



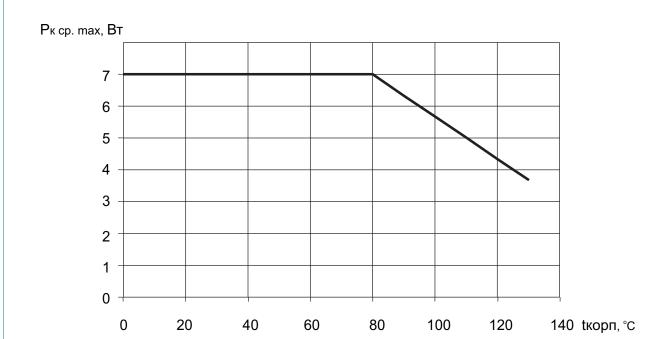


Типовая зависимость коэффициента полезного действия коллектора от входной мощности (Uп = 28 B, f = 400 МГц, tк≤40°C)


(Pвх = const, Uп = 28 B, f = 100 МГц)


(Pвх = const, Uп = 28 B, f = 400 МГц)



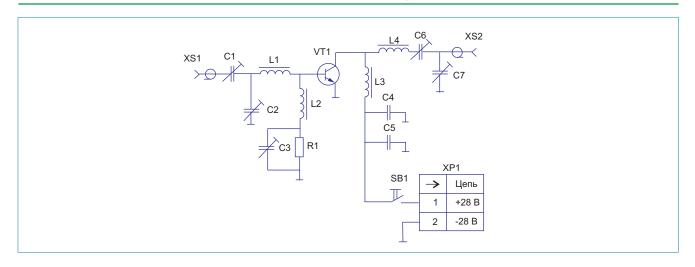









Область безопасной работы в статическом режиме (tпер≤185°C, tк≤60°C)






Типовая зависимость максимально допустимой средней рассеиваемой мощности коллектора от температуры корпуса



# Схема электрическая принципиальная измерительного усилителя для проверки параметров Рвых, Кур, η<sub>к</sub>на частоте 100 МГЦ



Конденсаторы

С1... С3 1КПВМ-1 ИХО.465.002 ТУ

C4 K10-176-H90-0,047 мκΦ±10 % ΟЖО.460.172 ТУ C5 K10-176-H90-3300 πΦ±10 % ΟЖО.460.172 ТУ

С6, С7 1КПВМ-1 ИХО.465.002 ТУ

Резисторы

R1 C2-33H-0,25-68 Om±10 % OЖO.467.173 ТУ

Дроссели

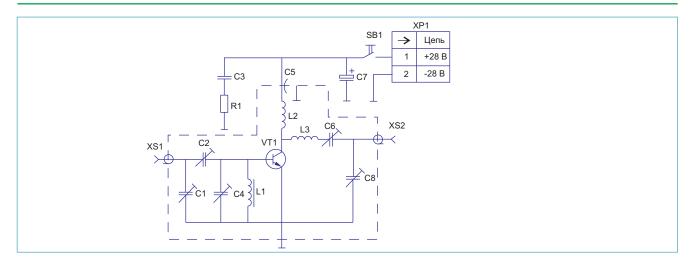
L1...L4 Дроссель высокочастотный ДМ-3-1 В ГИО.477.005 ТУ

Кнопки

SB1 KM2-1 OЮО.360.011 ТУ

Вилки

XP1 2РМ14КПНЧШ1В1 ГЕО.364.126 ТУ


Разъемы

XS1, XS2 Розетка приборная CP-50-165 Ф ВРО.364.010 ТУ

VT1 - измеряемый транзистор



# Схема электрическая принципиальная измерительного усилителя для проверки параметров Рвых, Кур, $\eta_{\kappa}$ на частоте 400 МГЦ



Конденсаторы

C1, C2 1КПВМ-4 ИХО.465.002 ТУ C3 C4 C5 К10-17б-Н90-0,033 мкФ±10 % ОЖО.460.172 ТУ 1КПВМ-3 ИХО.465.002 ТУ

КТП-1Аа-Н70-3300 пФ ГОСТ11553-80 C6 1КПВМ-3 ИХО.465.002 ТУ К50-35-40В-47 мкФ ОЖО.464.214 ТУ 1КПВМ-3 ИХО.465.002 ТУ

Резисторы

R1 C2-33H-0,25-240 Ом±10 % ОЖО.467.173 ТУ

Дроссели

Дроссель высокочастотный ДМ-3-1 В ГИО.477.005 ТУ L1 L2

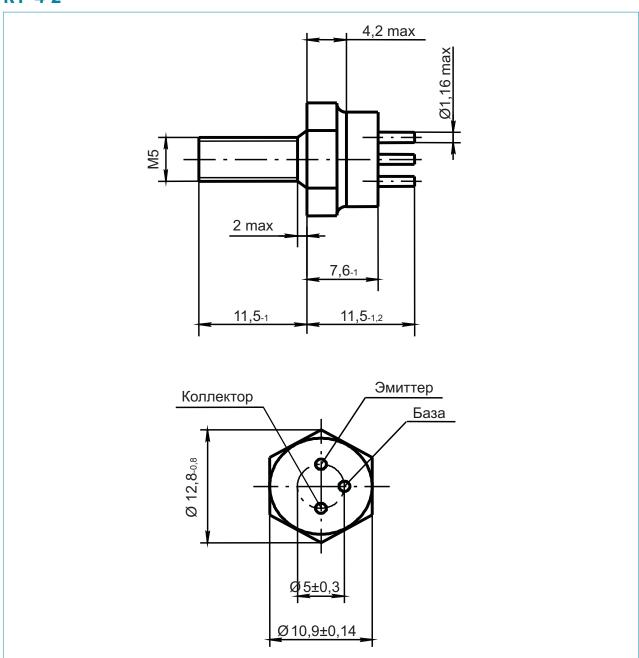
Катушка индуктивности И9М7.767.032-01 L3 Катушка индуктивности И9М7.767.042

Кнопки

SB1 КМ2-1 ОЮО.360.011 ТУ

Вилки

XP1 2РМ14КПНЧШ1В1 ГЕО.364.126 ТУ


Разъемы

XS1, XS2 Розетка приборная CP-50-165 Ф ВРО.364.010 ТУ

VT1 - измеряемый транзистор

# Габаритный чертеж корпуса

### KT-4-2

