

Non-Punch-Through (NPT) IGBT Chip

MYX100N170

1700V, 100A, $V_{CE(sat)} = 2.2V$

Part	V _{CES}	I _{Cn}	V _{CE (sat) Typ}	Die Size			
MYX100N170	1700V	100A	2.2V	6.5 x 9.7 mm ²			
See page 2 for ordering part numbers & supply formats							

Applications

Features

- AC & DC Motor Controls
- Short Circuit Rated
- High Power Modules
- Large Bondable Emitter Area

Maximum Ratings

Positive Temperature Co-efficient

Symbol	Parameter	conditions	Ratings	Units
V_{CES}	Collector to Emitter Voltage	V _{GE} =0V, T _J ≥ 25°C	1700	V
V_{GES}	Gate to Emit	ter Voltage	±20	V
I _C	Drain Cu	Drain Current ¹		А
I _{CM}	Pulsed Collec	ctor Current	200	А
t _{PSC}	IGBT short circuit SOA	$V_{CC} = 1000V, V_{CEM} CHIP \le 1700V$ $V_{GE} \le 15V, T_J \le 150$ °C	10	μs
T _J , T _{STG}	Operation Junction & S	Storage Temperature	-40 to 125	°C

Static Characteristics, T_J = 25° unless otherwise noted

Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
BV _{CES}	Collector to Emitter Breakdown Voltage	$V_{GE} = 0V, I_{C} = 1$	mA,T _J = 25 °C	-	-	1700	V
I _{CES}	Collector Cut-Off Current	V _{CE} = 1800V	T _J = 25°C	-	-	0.1	μΑ
		$V_{GE} = 0V$	T _J = 150°C	-	-	-	mA
I _{GES}	G-E Leakage Current		$V_{GE} = +50V$		1000		
		$V_{CE} = 0V$ $T_{J} = 25^{\circ}C$	V _{GE} = +30V	-	50	-	nA
		11 - 23 C	V _{GE} = -30V		50		

Notes

- 1. Performance will vary based on assembly technique and substrate choice
- 2. Defined by chip design, not subject to 100% production test at wafer level
- 3. Specified in discrete package for indicative purposes only, bare die performance will vary depending on module design

On Characteristics, T_J = 25°C unless otherwise noted

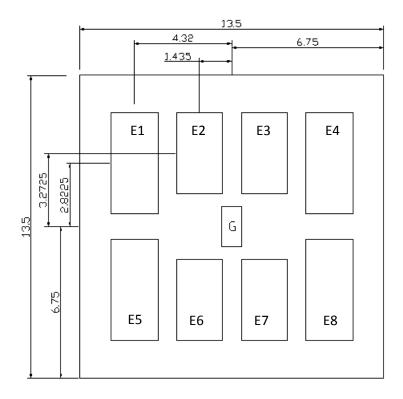
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
V _{GE(th)}	G-E Threshold Voltage	I_C =20 mA, V_{CE} = V_{GE}	4.5	5.5	6.5	V
		I _C = 15A, V _{GE} = 15V,	2.0	2.2	2.6	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	I _C = 15A, V _{GE} = 15V T _J = 150°C	-	-	-	V

Dynamic Characteristics², T_J = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
C _{ies}	Input Capacitance	V _{CE} = 25V, V _{GE} = 0V f = 1MHz	-	30	-	nF
C _{oes}	Output Capacitance		-	-	-	nF
C _{res}	Reverse Transfer Capacitance		-	-	-	nF
Q_ge	Gate charge	$I_C = 100A, V_{CE} = 900V, V_{GE} = \pm 15V$	-	4.5	-	μC

Switching Characteristics³, T_J = 25°C unless otherwise noted

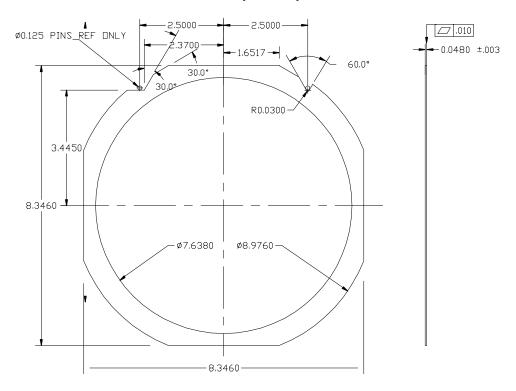
Symbol	Parameter	Test Condition	S	Min	Тур	Max	Units
t _{d(on)}	Turn-On Delay Time		T _J = 25 °C	-	250	-	ns
			T _J = 125 °C		400	-	
t _r	Rise Time		T _J = 25 °C	-	250	-	ns
		V _{CE} =900V,	T _J = 125 °C		250	-	
t _{d(off)}	Turn-Off Delay Time	I _C = 100A,	T _J = 25 °C	-	1150	-	ns
		$R_{gon} R_{goff} = 4.7\Omega$	T _J = 125 °C		1400	-	
t _f	Fall Time	$V_{GE} = \pm 15V$ Ls app 100nH,	T _J = 25 °C	-	100	-	ns
		inductive load	T _J = 125 °C		130	-	
E _{on}	Turn-On Switching		T _J = 25 °C	-	150	-	mJ
	Loss		T _J = 125 °C		170	-	
E _{off}	Turn-Off Switching		T _J = 25 °C	-	120	-	mJ
	Loss		T _J = 150 °C		180	-	
		$t_{PSC} \le 10 \ \mu s, \ V_{GE} \le 15 V,$		l1	463		
I _{SC}	Short circuit current	V _{CC} =1000V,	T _J = 125 °C			-	Α
		V _{CEM} CHIP ≤1700V		12	400		

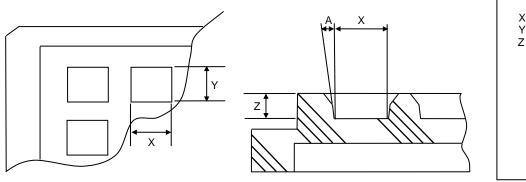

Notes:

- 1. Performance will vary based on assembly technique and substrate choice
- 2. Defined by chip design, not subject to 100% production test at wafer level
- 3. Specified in discrete package for indicative purposes only, bare die performance will vary depending on module design

Ordering Guide

Part Number	Format	Detail / Drawing		
MYX100N170MW	Un-sawn wafer, electrical rejects inked	Page 3		
MYX100N170MF	Sawn wafer on film-frame	Page 4		
MYX100N170MD	Singulated die / chips in waffle pack	Page 4		
Note: Singulated Die / Chips can also be supplied in Pocket Tape or SurfTape® on request				


Die Drawing -Dimensions (mm)


Mechanical Data

Parameter		Units	
Chip Dimensions Un-sawn	13500 x 13500	μm	
Chip Thickness (Nominal)	514	μm	
Gate Pad Size	900 x 1770	μm	
Emitter Pad Size – E1, E4, E5, E8	4505 x 2163	μm	
Emitter Pad Size – E2, E3, E6, E7	3605 x 2030		
Wafer Diameter	150 (subject to change)		
Saw Street	80 (subject to change)		
Wafer orientation on frame	Wafer notch parallel with frame flat		
Topside Metallisation & Thickness	Al / Si 5	μm	
Backside Metallisation & Thickness	Ti 0.06μm / Ni 0.75μm / Ag 0.25μm		
Recommended Die Attach Material	Soft Solder or Conductive Epoxy		
Recommended Wire Bond - Gate	Al 150μm X1		
Recommended Wire Bond – Emitter	Al, ≤500μm		

Sawn Wafer on Film-Frame - Dimensions (inches)

Die in Waffle Pack - Dimensions (mm)

X = 13.94mm ± 0.13 mm pocket size Y = 13.94mm ± 0.13 mm pocket size Z = 0.99mm ± 0.08 mm pocket depth A = 5° $\pm 1/2$ ° pocket draft angle No Cross Slots Array = 3 X 3 (9)

OVERALL TRAY SIZE

Size = 50.67mm ± 0.25 mm Height = 3.94mm ± 0.13 mm Flatness = 0.30mm

DISCLAIMER THE INFORMATION HEREIN IS GIVEN TO DESCRIBE CERTAIN COMPONENTS AND SHALL NOT BE CONSIDERED AS WARRANTED CHARACTERISTICS. NO RESPONSIBILITY IS ASSUMED FOR ITS USE; NOR FOR ANY INFRINGEMENT OF PATENTS OR OTHER RIGHTS OF THIRD PARTIES WHICH MAY RESULT FROM ITS USE. NO LICENSE IS GRANTED BY IMPLICATION OR OTHERWISE UNDER ANY PATENT OR PATENT RIGHTS OF MICROSS COMPONENTS.

MICROSS COMPONENTS RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF MICROSS' WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY:- MICROSS' PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF MICROSS COMPONENTS LTD.

As used here in:

1. Life support devices or systems are devices or systems which,

(a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labelling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system. or to affect its safety or effectiveness.