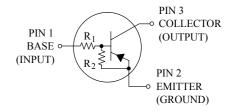

SEMICONDUCTOR TECHNICAL DATA


Bias Resistor Transistors

PNP Silicon Surface Mount Transistors with Monolithic Bias Resistor Network

This new series of digital transistors is designed to replace a single device and its external resistor bias network. The BRT (Bias Resistor Transistor) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space. The device is housed in the SC-89 package which is designed for low power surface mount applications.

- · Simplifies Circuit Design
- Reduces Board Space
- · Reduces Component Count
- The SC-89 package can be soldered using wave or reflow. The modified gull-winged leads absorb thermal stress during soldering eliminating the possibility of damage to the die.

MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	50	Vdc
Collector-Emitter Voltage	V _{CEO}	50	Vdc
Collector Current	I _C	100	mAdc

THERMAL CHARACTERISTICS

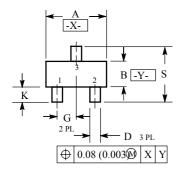
Characteristic	Symbol	Max	Unit
Total Device Dissipation, FR-4 Board (Note 1.) @ TA = 25°C Derate above 25°C	PD	200 1.6	mW mW/°C
Thermal Resistance, Junction to Ambient (Note 1.)	RθJA	600	°C/W
Total Device Dissipation, FR-4 Board (Note 2.) @ TA = 25°C Derate above 25°C	PD	300 2.4	mW mW/°C
Thermal Resistance, Junction to Ambient (Note 2.)	RθJA	400	°C/W
Junction and Storage Temperature Range	TJ, T _{stg}	-55 to +150	°C

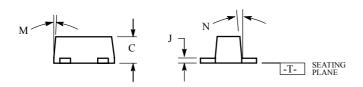
- 1. FR-4 @ Minimum Pad
- 2. FR-4 $\stackrel{-}{@}$ 1.0 × 1.0 Inch Pad

DEVICE MARKING AND ORDERING INFORMATION

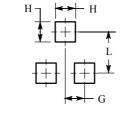
Device	Marking	Shipping
DTA601T1G	6J	3000/Tape&Reel
DTA601T3G	6J	10000/Tape&Reel

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted) (Continued)


Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Base Cutoff Current ($V_{CB} = 50 \text{ V}, I_E = 0$)	I _{CBO}	_	_	100	nAdc
Collector-Emitter Cutoff Current ($V_{CE} = 50 \text{ V}, I_B = 0$)	I _{CEO}	I _{CEO} –		500	nAdc
Emitter-Base Cutoff Current $(V_{BE} = 6.0 \text{ V})$	I _{EBO}	I _{EBO} –		1.5	mAdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu A$, $I_E = 0$)	V _{(BR)CBO}	50	_	_	Vdc
Collector-Emitter Breakdown Voltage (Note 3) $(I_C = 2.0 \text{ mA}, I_B = 0)$	V _{(BR)CEO}	50	-	-	Vdc
ON CHARACTERISTICS (Note 3)					
DC Current Gain $(V_{CE} = 10 \text{ V}, I_C = 5.0 \text{ mA})$	hFE	15	27	_	
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$)	V _{CE(sat)}	_	_	0.25	Vdc
Output Voltage (on) $(V_{CC} = 5.0 \text{ V}, V_B = 2.5 \text{ V}, R_L = 1.0 \text{ k}\Omega)$	V _{OL}	_	-	0.2	Vdc
Output Voltage (off) $(V_{CC} = 5.0 \text{ V}, V_B = 0.25 \text{ V}, R_L = 1.0 \text{ k}\Omega)$	V _{OH}	4.9	_	_	Vdc
Input Resistor	R ₁	3.3	4.7	6.1	kΩ
Resistor Ratio	R ₁ /R ₂	0.8	1.0	1.2	


^{3.} Pulse Test: Pulse Width $< 300\mu$ s, Duty Cycle < 2.0%

Revision No: 0


SC-89

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETERS
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
 4. 463C-01 OBSOLETE, NEW STANDARD 463C-02.

	MILLIMETERS		INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	1.50	1.60	1.70	0.059	0.063	0.067
В	0.75	0.85	0.95	0.030	0.034	0.040
C	0.60	0.70	0.80	0.024	0.028	0.031
D	0.23	0.28	0.33	0.009	0.011	0.013
G	0.50BSC		0.020BSC			
Н	0.53RBF		0.021RBF			
J	0.10	0.15	0.20	0.004	0.006	0.008
K	0.30	0.40	0.50	0.012	0.016	0.020
L	1.10RBF		0.043RBF			
M	-	-	10°	-	-	10°
N	-	-	10°	-	-	10°
S	1.50	1.60	1.70	0.059	0.063	0.067

RECOMMENDED PATTERN OF SOLDER PADS