
SEMICONDUCTOR TECHNICAL DATA

Dual General Purpose Transistor

The FFB3904D device is a spin-off of our popular SOT-23/SOT-323 three-leaded device. It is designed for general purpose amplifier applications and is housed in the SOT-363 six-leaded surface mount package. By putting two discrete devices in one package, this device is ideal for low-power surface mount applications where board space is at a premium.

- h_{FE}, 100–300
- Low $V_{CE(sat)}$, $\leq 0.4 \text{ V}$
- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- Available in 8 mm, 7-inch/3,000 Unit Tape and Reel

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collecto r-Emitte r Voltage	V _{CEO}	40	Vdc
Collecto r-Base Voltage	V _{CBO}	60	Vdc
Emitte r-Base Voltage	V_{EBO}	6.0	Vdc
Collector Current – Continuous	I_C	200	mAdc
Electrostatic Discharge	ESD	HBM>16000, MM>2000	V

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Package Dissipatio n(1) TA = 25 C	P_{D}	150	mW
Thermal Resistance Junction to Ambient	$R_{\theta JA}$	833	C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	С

 Device mounted on FR4 glass epoxy printed circuit board using the minimum recommended footprint.

ORDERING INFORMATION

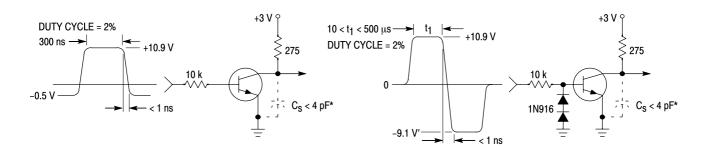
Devic e	Marking	Shipping
FFB3904DW1T1G	MA	3000 Units/Reel
FFB3904DW1T3G	MA	10000 Units/Reel

FFB3904D

ELECTRICAL CHARACTERISTICS (T_A = 25 C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector–Emitter Breakdown Voltage (2) $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	V(BR)CEO	40	_	Vdc
Collector–Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V _(BR) CBO	60	_	Vdc
Emitter–Base Breakdown Voltage $(I_E = 10 \mu Adc, I_C = 0)$	V _{(BR)EBO}	6.0	_	Vdc
Base Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)	I _{BL}	_	50	nAdc
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)	I _{CEX}	_	50	nAdc
ON CHARACTERISTICS (2)				
DC Current Gain $ \begin{aligned} &(I_{C}=0.1 \text{ mAdc, V }_{CE}=1.0 \text{ Vdc}) \\ &(I_{C}=1.0 \text{ mAdc, V }_{CE}=1.0 \text{ Vdc}) \\ &(I_{C}=10 \text{ mAdc, V }_{CE}=1.0 \text{ Vdc}) \\ &(I_{C}=10 \text{ mAdc, V }_{CE}=1.0 \text{ Vdc}) \\ &(I_{C}=50 \text{ mAdc, V }_{CE}=1.0 \text{ Vdc}) \\ &(I_{C}=100 \text{ mAdc, V }_{CE}=1.0 \text{ Vdc}) \end{aligned} $	hfE	40 70 100 60 30	- 300 - -	_
Collector–Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)	V _{CE} (sat)	- -	0.2 0.3	Vdc
Base–Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)	VBE(sat)	0.65	0.85 0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current–Gain – Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	f_{T}	300	_	MHz
Output Capacitance ($V_{CB} = 5.0 \text{ Vdc}$, $I_{E} = 0$, $f = 1.0 \text{ MHz}$)	C _{obo}	-	4.0	pF
Input Capacitance ($V_{EB} = 0.5 \text{ Vdc}$, I $_{C} = 0$, f = 1.0 MHz)	C _{ibo}	-	8.0	pF

^{2.} Pulse Test: Pulse Width $\leq 300 \mu s$; Duty Cycle $\leq 2.0\%$.


FFB3904D

ELECTRICAL CHARACTERISTICS (T_A = 25 C unless otherwise noted) (Continued)

Characteristic	Symbol	Min	Max	Unit
Input Impedance ($V_{CE} = 10 \text{ Vdc}$, I $_{C} = 1.0 \text{ mAdc}$, f = 1.0 kHz)	h _{ie}	1.0 2.0	10 12	kΩ
Voltage Feedback Ratio ($V_{CE} = 10 \text{ Vdc}$, $I_{C} = 1.0 \text{ mAdc}$, $f = 1.0 \text{ kHz}$)	h _{re}	0.5 0.1	8.0 10	X 10 ⁻⁴
Small–Signal Current Gain ($V_{CE} = 10 \text{ Vdc}$, I $_{C} = 1.0 \text{ mAdc}$, f = 1.0 kHz)	h _{fe}	100 100	400 400	_
Output Admittance (V _{CE} = 10 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz)	h _{oe}	1.0 3.0	40 60	μmhos
Noise Figure (V _{CE} = 5.0 Vdc, I _C = 100 μ Adc, R _S = 1.0 k Ω , f = 1.0 kHz)	NF	_ _	5.0 4.0	dB

SWITCHING CHARACTERISTICS

Delay Time	$(V_{CC} = 3.0 \text{ Vdc}, V_{BE} = -0.5 \text{ Vdc})$	t _d	-	35	
Rise Time	$(I_C = 10 \text{ mAdc}, I_{B1} = 1.0 \text{ mAdc})$	t _r	-	35	ns
Storage Time	$(V_{CC} = 3.0 \text{ Vdc}, I_{C} = 10 \text{ mAdc})$	t _S	-	200	
Fall Time	$(I_{B1} = I_{B2} = 1.0 \text{ mAdc})$	tf	-	50	ns

^{*} Total shunt capacitance of test jig and connectors

Figure 1. Delay and Rise Time Equivalent Test Circuit

Figure 2. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

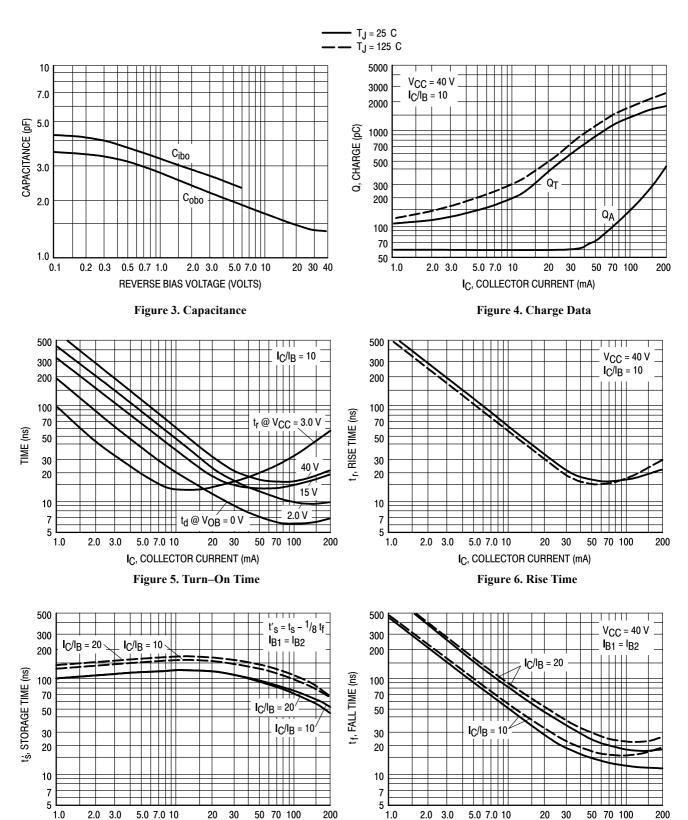


Figure 8. Fall Time

IC, COLLECTOR CURRENT (mA)

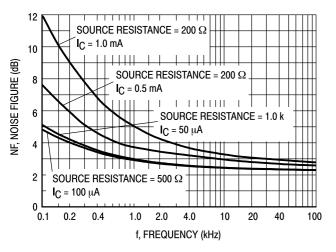

IC, COLLECTOR CURRENT (mA)

Figure 7. Storage Time

TYPICAL AUDIO SMALL–SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $(V_{CE} = 5.0 \text{ Vdc}, T_A = 25 \text{ °C}, Bandwidth} = 1.0 \text{ Hz})$

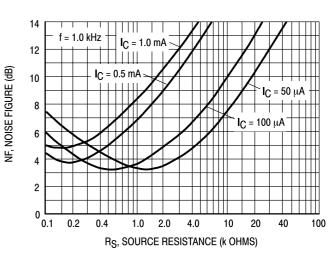
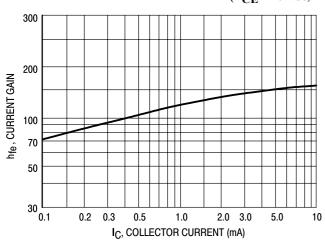



Figure 9. Noise Figure

Figure 10. Noise Figure

h PARAMETERS

 $(V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25 \,^{\circ}\text{C})$

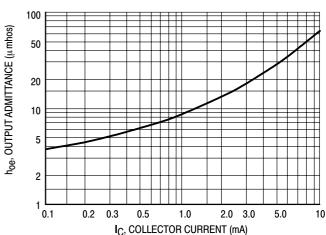


Figure 11. Current Gain

Figure 12. Output Admittance

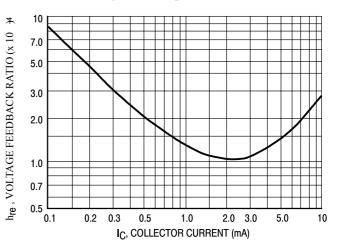


Figure 13. Input Impedance

Figure 14. Voltage Feedback Ratio

TYPICAL STATIC CHARACTERISTICS

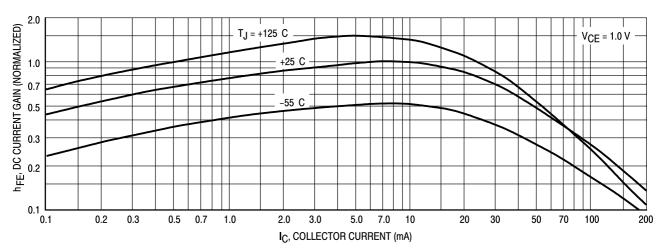


Figure 15. DC Current Gain

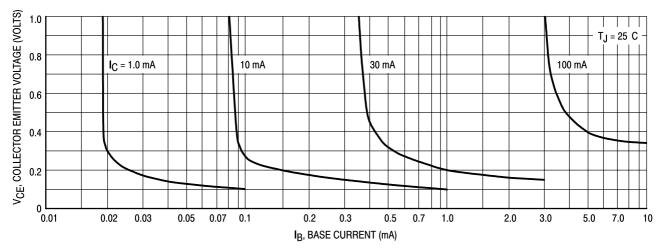
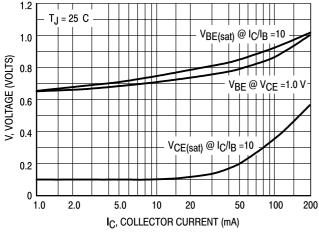
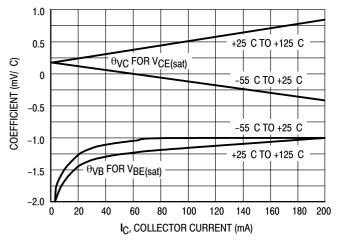
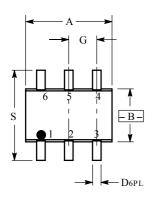
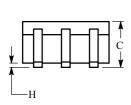


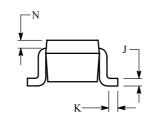
Figure 16. Collector Saturation Region

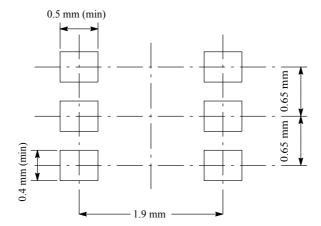

Figure 17. "ON" Voltages




Figure 18. Temperature Coefficients

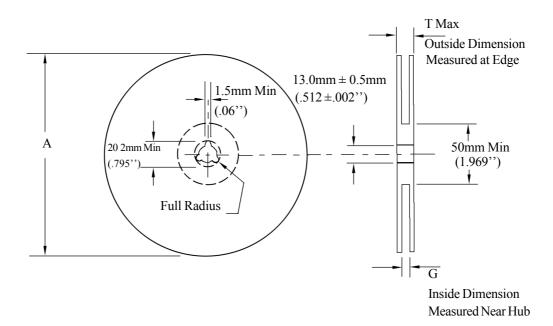


SC -88/SOT -363


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

DIM	IN	ICHES	MILLIM	ETERS
Divi	MIN	MAX	MIN	MAX
A	0.071	0.087	1.80	2.20
В	0.045	0.053	1.15	1.35
C	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026 BSC		0.65	BSC
Н		0.004		0.10
J	0.004	0.010	0.10	0.25
K	0.004	0.012	0.10	0.30
N	0.008 REF		0.20	REF
S	0.079	0.087	2.00	2.20


PIN 1 EMITTER 2

- 2 BASE 2
- 3 COLLECTOR 1 4 EMITTER 1
- 5 BASE 1
- 6 COLLECTOR 2

EMBOSSED TAPE AND REEL DATA FOR DISCRETES

Size	A Max	G	T Max
8 mm	330mm	8.4mm+1.5mm, -0.0	14.4mm
	(12.992'')	(.33''+.059'', -0.00)	(.56'')

Reel Dimensions

Metric Dimensions Govern — English are in parentheses for reference only

Storage Conditions

Temperature: 5 to 40 Deg.C (20 to 30 Deg. C is preferred)

Humidity: 30 to 80 RH (40 to 60 is preferred)
Recommended Period: One year after manufacturing

(This recommended period is for the soldering condition only. The characteristics and reliabilities of the products are not restricted to

this limitation)

2008.03.10

8/8