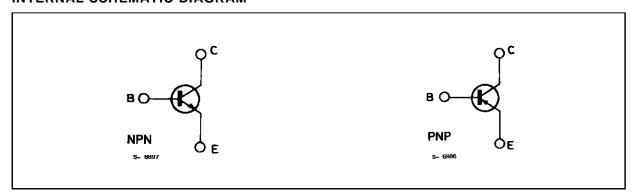

BC300 BC301-BC302


MEDIUM POWER AUDIO DRIVERS

DESCRIPTION

The BC300, BC301 and BC302 are silicon planar epitaxial NPN transistors in TO-39 metal case. They are intended for audio driver stages in commercial and industrial equipments. In addition they are useful as high speed saturated switches and general purpose amplifiers. The PNP types complementary to BC301 and BC302 are respectively the BC303 and BC304.

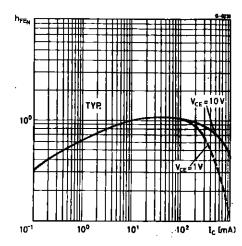
INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

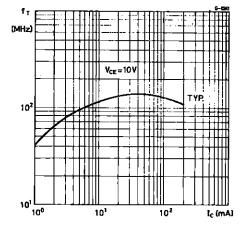
Symbol	Parameter		Unit		
	Farameter	BC300	BC301	BC302	Onit
V _{CBO}	Collector-base Voltage (I _E = 0)	120 90 60		60	V
V _{CEO}	Collector-emitter Voltage (I _B = 0)	80 60 45		45	V
V_{EBO}	Emitter-base Voltage (I _C = 0)	7			V
Ic	Collector Current	0.5			Α
I _{CM}	Collector Peak Current	1			Α
P _{tot}	Total Power Dissipation at T _{amb} ≤ 25 °C	0.85			W
	at T _{case} ≤ 25 °C	6			W
T_{stg}	Storage Temperature	- 65 to 175		°C	
Τj	Junction Temperature	175			°C

January 1989 1/5

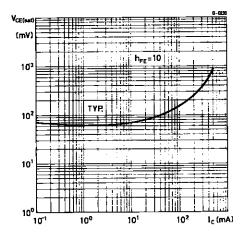
THERMAL DATA

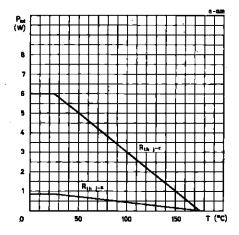

R _{th j-case}	Thermal Resistance Junction-case	Max	25	°C/W
R _{th j-amb}	Thermal Resistance Junction-ambient	Max	175	°C/W

ELECTRICAL CHARACTERISTICS($T_{case} = 25 \, ^{\circ}C$ unless otherwise specified)

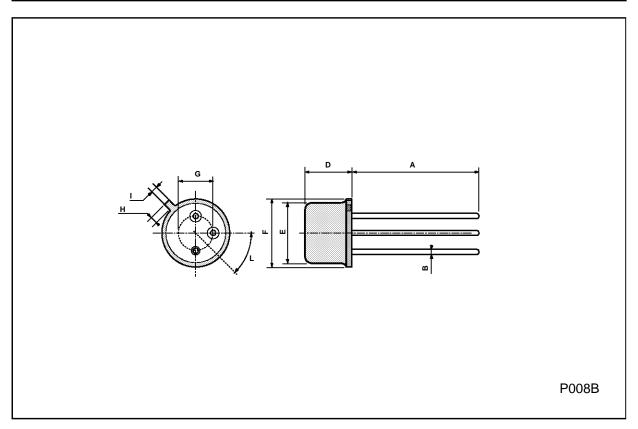

Symbol	Parameter	Test Conditions		Min.	Min. Typ.		Unit
I _{CBO}	Collector Cutoff Current (I _E = 0)	$V_{CB} = 60 \text{ V}$			5	20	nA
I _{EBO}	Emitter Cutoff Current (I _C = 0)	$V_{EB} = 5 V$				10	nA
V _{(BR)CEO} *	Collector-emitter Breakdown Voltage (I _B = 0)	I _C = 30 mA	for BC300 for BC301 for BC302	80 60 45			V V V
V _{(BR)CBO}	Collector-base Breakdown Voltage (I _E = 0)	I _C = 100 μA	for BC300 for BC301 for BC302	120 90 60			V V V
V _{CE(sat)} *	Collector-emitter Saturation Voltage	I _C = 150 mA	I _B = 15 mA		0.2	0.5	V
V _{BE} *	Base-emitter Voltage	I _C = 150 mA	V _{CE} = 10 V		0.78		V
h _{FE} *	DC Current Gain Gr. 4 Gr. 5 Gr. 6	$I_{C} = 150 \text{ mA}$ $I_{C} = 150 \text{ mA}$ $I_{C} = 150 \text{ mA}$ $I_{C} = 0.1 \text{ mA}$ $I_{C} = 500 \text{ mA}$	$V_{CE} = 10 \text{ V}$	40 70 120 20 20		80 140 240	
f _T	Transition Frequency	I _C = 10 mA	V _{CE} = 10 V		100		MHz
C _{CBO}	Collector-base Capacitance	I _E = 0	V _{CB} = 10 V		12		pF
h _{ie}	Input Impedance	I _C = 5 mA f = 1 kHz	V _{CE} = 10 V		1.1		kΩ
h _{re}	Reverse Voltage Ratio	I _C = 5 mA f = 1 kHz	V _{CE} = 10 V		1.7 x 10 ⁻⁴		
h _{fe}	Small Signal Current Gain	I _C = 5 mA f = 1 kHz	V _{CE} = 10 V		140		
h _{oe}	Output Admittance	I _C = 5 mA f = 1 kHz	V _{CE} = 10 V		14		μS

^{*} Pulsed: pulse duration = 300 μs, duty cycle = 1 %.


DC Normalized Current Gain.


Transition Frequency.

Collector-emitter Saturation Voltage.



Power Rating Chart.

TO39 MECHANICAL DATA

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α	12.7			0.500			
В			0.49			0.019	
D			6.6			0.260	
E			8.5			0.334	
F			9.4			0.370	
G	5.08			0.200			
Н			1.2			0.047	
ı			0.9			0.035	
L	45° (typ.)						

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

