

APT901R1HN APT1001R3HN APT901R3HN

1000V **9.5A** 1.10 Ω 900V 9.5A 1.10 Ω 1000V 9.0A 1.30Ω

9.0A 900V 1.30Ω

N-CHANNEL ENHANCEMENT MODE HIGH VOLTAGE POWER MOSFETS

MAXIMUM RATINGS

All Ratings: T_o = 25°C unless otherwise specified.

Symbol	Parameter	APT 901R1HN	APT 1001R1HN	APT 901R3HN	APT 1001R3HN	UNIT
V _{DSS}	Drain-Sou <mark>rce Vol</mark> tage	900	1000	900	1000	Volts
I _D	Continuous Drain Current @ T _C = 25°C	9.5		9.0		Amps
IDM	Pulsed Drain Current ^①	38		36		
V _{GS}	Gate-Source Voltage	±30		30	0	
P _D	Total Power Dissipation @ T _C = 25°C		250			
	Linear Derating Factor	2.0				W/°C
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55 to 150		°C		
TL	Lead Temperature: 0.063" from Case for 10 Sec. 300					

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions / Part Number		MIN	TYP	MAX	UNIT
BV _{DSS}	Drain-Source Breakdown Voltage (V _{GS} = 0V, I _D = 250 μA) APT901R1HN/APT901R3HN	APT1001R1HN/APT1001R3HN	1000	-27	6092	Vale
		900		Z50.	Volts	
I _D (ON)	# 1 (OND B (OND M) / 40/0	APT1001R1HN/APT901R1HN	9.5	40.		Amps
		APT1001R3HN/APT901R3HN	9.0			
R _{DS} (ON)		APT1001R1HN/APT901R1HN			1.10	05
		APT1001R3HN/APT901R3HN			1.30	Ohms
1990	Zero Gate Voltage Drain Current (V _{DS} = V _{DSS} , V _{GS} = 0V)				250	
DSS	Zero Gate Voltage Drain Current (V _{DS} = 0.8 V _{DSS} , V _{GS} = 0V, T _C = 125°C)				1000	μА
I _{GSS}	Gate-Source Leakage Current (V _{GS} = ±30V, V _{DS} = 0V)			7-1	±100	nA
V _{GS} (TH)	Gate Threshold Voltage (V _{DS} = V _{GS} , I _D = 1.0mA)		2	WW	4	Volts

THERMAL CHARACTERISTICS

Symbol	Characteristic	MIN	TYP	MAX	UNIT
R _{eJC}	Junction to Case			0.50	00001
R _{eJA}	Junction to Ambient			40	•C/W

405 S.W. COLUMBIA STREET BEND, OREGON 97702-1035

PHONE ... (503) 382-8028

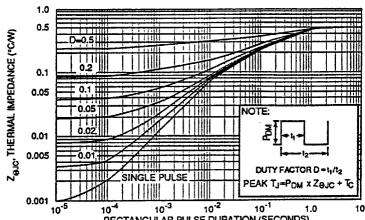
FAX (503) 388-0364

DYNAMIC CHARACTERISTICS

APT1001R1/901R1/1001R3/901R3HN

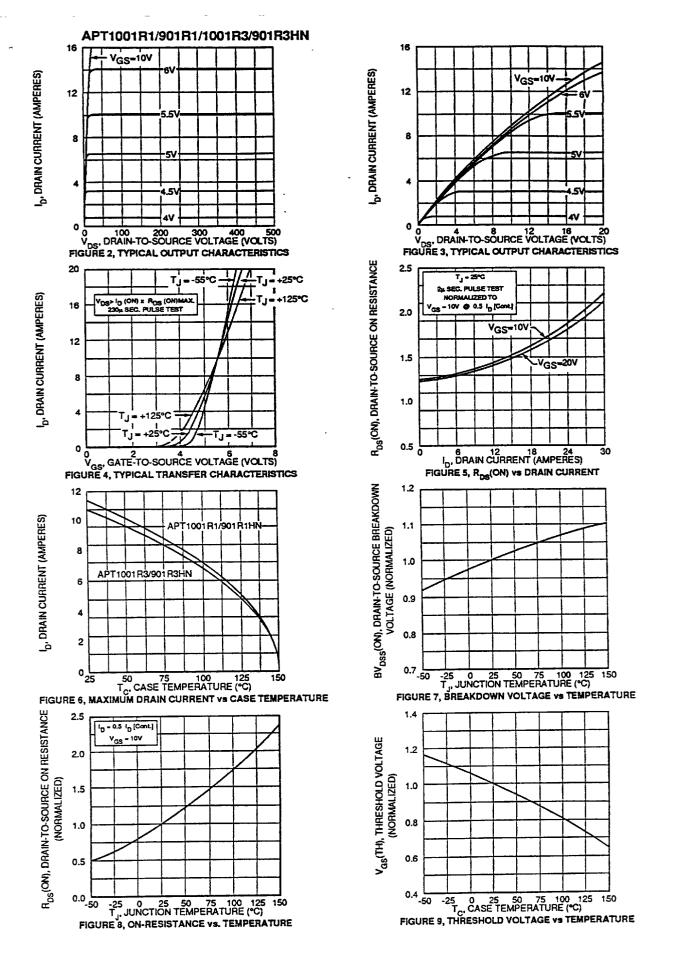
Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
CDC	Drain-to-Case Capacitance	f = 1 MHz		24	36	
Ciss	Input Capacitance	V _{GS} = 0V		2430	2950	рF
Coss	Output Capacitance	V _{DS} = 25V		300	420	
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		100	150	
Qg	Total Gate Charge 3	. V _{GS} = 10V		90	130	
Q _{gs}	Gate-Source Charge	$V_{DD} = 0.5 V_{DSS}$		9.3	14	nC
G ⁸⁴	Gate-Drain ("Miller") Charge	I _D = I _D [Cont.] @ 25°C		47	70]
t _d (on)	Turn-on Delay Time	V _{GS} = 15V		14	28	
t _r	Rise Time	$V_{DD} = 0.5 V_{DSS}$		14	28	
t _d (off)	Turn-off Delay Time	I _D = I _D [Cont.] @ 25°C		66	90	ns
t _f	Fall Time	$R_{G} = 1.8\Omega$		20	40	

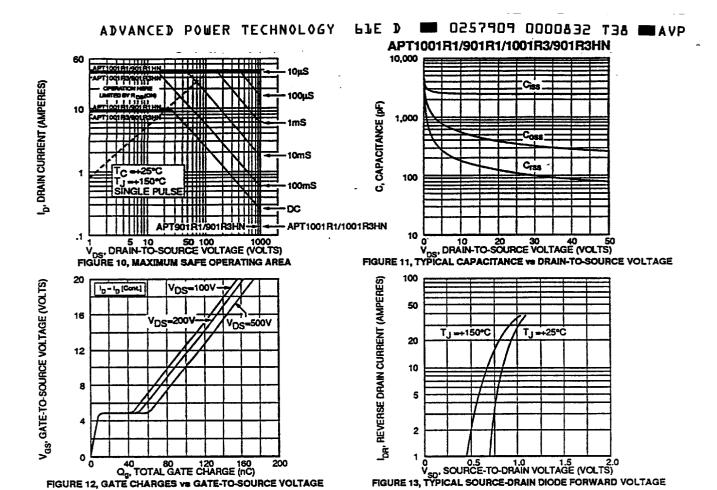
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

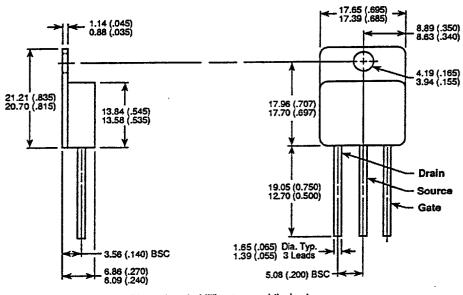

Symbol	Characteristic / Test Conditions		MIN	TYP	MAX	UNIT
1	Continuous Source Current (Body Diode) APT1001R1HN / APT901R1HN APT1001R3HN / APT901R3HN	APT1001R1HN / APT901R1HN			9.5	
's				9.0		
1_	614	APT1001R1HN / APT901R1HN			38	Amps
'SM		APT1001R3HN / APT901R3HN			36	
V _{SD}	Diode Forward Voltage ② (V _{GS} = 0V, I _S = -I _D [Cont.])				1.3	Volts
t _{rr}	Reverse Recovery Time $(I_S = -I_D [Cont.], dI_S/dt = 100A/\mu s)$		320	636	1200	ns
Q _{rr}	Reverse Recovery Charge (I _S = -I _D [Cont.], dI _S /dt = 100A/μs)		2.2	4.5	9	μС

SAFE OPERATING AREA CHARACTERISTICS

Symbol	Characteristic	Test Conditions		TYP	MAX	UNIT
SOA1	Safe Operating Area	$V_{DS} = 0.4 V_{DSS}, I_{DS} = P_D / 0.4 V_{DSS}, t = 1 \text{ Sec.}$ $I_{DS} = I_D [\text{Cont.}], V_{DS} = P_D / I_D [\text{Cont.}], t = 1 \text{ Sec.}$				Watts
SOA2	Safe Operating Area					waiis
lтм	Industive Comest Classed	APT1001R1HN / APT901R1HN	38			1
	Inductive Current Clamped	APT1001R3HN / APT901R3HN	36			Amps


① Repetitive Rating: Pulse width limited by maximum junction temperature. See Transient Thermal Impedance Curve. (Fig. 1)


³See MIL-STD-750 Method 3471


RECTANGULAR PULSE DURATION (SECONDS)
FIGURE 1, MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE VS PULSE DURATION

②Pulse Test: Pulse width < 380 μS, Duty Cycle < 2%

TO-258AA Package Outline

