TMOS E-FET ™ Power Field Effect Transistor N–Channel Enhancement–Mode Silicon Gate

This high voltage MOSFET uses an advanced termination scheme to provide enhanced voltage–blocking capability without degrading performance over time. In addition, this advanced TMOS E–FET is designed to withstand high energy in the avalanche and commutation modes. The new energy efficient design also offers a drain–to–source diode with a fast recovery time. Designed for high voltage, high speed switching applications in power supplies, converters and PWM motor controls, these devices are particularly well suited for bridge circuits where diode speed and commutating safe operating areas are critical and offer additional safety margin against unexpected voltage transients.

- Robust High Voltage Termination
- Avalanche Energy Specified
- Source-to-Drain Diode Recovery Time Comparable to a Discrete Fast Recovery Diode
- Diode is Characterized for Use in Bridge Circuits
- I_{DSS} and V_{DS(on)} Specified at Elevated Temperature

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

ON Semiconductor Preferred Device

MTP6N60E

6.0 AMPERES 600 VOLTS R_{DS(on)} = 1.2 OHMS

D

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	600	Vdc
Drain-to-Gate Voltage (R_{GS} = 1.0 M Ω)	V _{DGR}	600	Vdc
Gate-to-Source Voltage — Continuous — Non-Repetitive ($t_p \le 10 \text{ ms}$)	V _{GS} V _{GSM}	±20 ±40	Vdc Vpk
$\begin{array}{llllllllllllllllllllllllllllllllllll$	I _D I _D I _{DM}	6.0 4.6 18	Adc Apk
Total Power Dissipation Derate above 25°C	P _D	125 1.0	Watts W/°C
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to 150	°C
Single Pulse Drain–to–Source Avalanche Energy — Starting $T_J = 25^{\circ}C$ (V _{DD} = 100 Vdc, V _{GS} = 10 Vdc, I _L = 9.0 Apk, L = 10 mH, R _G = 25 Ω)	E _{AS}	405	mJ
Thermal Resistance — Junction to Case — Junction to Ambient	$R_{ extsf{ heta}JC} \ R_{ hetaJA}$	1.0 62.5	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	TL	260	°C

Preferred devices are ON Semiconductor recommended choices for future use and best overall value.

MTP6N60E

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Cha	racteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Volta (V _{GS} = 0 Vdc, I _D = 0.25 μAdc) Temperature Coefficient (Positive	ge e)	V _(BR) DSS	600 —	 689		Vdc mV/°C
Zero Gate Voltage Drain Current ($V_{DS} = 600 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}$) ($V_{DS} = 600 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_{CS}$	յ = 125°C)	I _{DSS}			1.0 50	μAdc
Gate-Body Leakage Current (V _{GS} = ±20 Vdc, V _{DS} = 0 Vdc)		I _{GSS}	_		100	nAdc
ON CHARACTERISTICS (1)						
Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_D = 250 \mu Adc$) Temperature Coefficient (Negative	/e)	V _{GS(th)}	2.0 —	3.0 7.1	4.0	Vdc mV/°C
Static Drain-to-Source On-Resist	ance (V_{GS} = 10 Vdc, I_D = 3.0 Adc)	R _{DS(on)}	—	0.94	1.2	Ohms
$\label{eq:constraint} \begin{array}{ c c } \hline Drain-to-Source On-Voltage \\ (V_{GS}=10 \ Vdc, \ I_D=6.0 \ Adc) \\ (V_{GS}=10 \ Vdc, \ I_D=3.0 \ Adc, \ T_J=0.0 \ Adc) \end{array}$	= 125°C)	V _{DS(on)}	_	6.0	8.6 7.6	Vdc
Forward Transconductance (V _{DS} =	15 Vdc, I _D = 3.0 Adc)	9 _{FS}	2.0	5.5	—	mhos
DYNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}	—	1498	2100	pF
Output Capacitance	$(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$	C _{oss}	_	158	220	
Reverse Transfer Capacitance		C _{rss}		29	60	1
SWITCHING CHARACTERISTICS (2)					•
Turn-On Delay Time		t _{d(on)}	—	14	30	ns
Rise Time	$(V_{DS} = 300 \text{ Vdc}, I_{D} = 6.0 \text{ Adc},$	t _r	_	19	40	
Turn-Off Delay Time	$V_{GS} = 10 \text{ Vdc},$ $B_{C} = 9.1 \Omega)$	t _{d(off)}	_	40	80	
Fall Time		t _f	—	26	55	
Gate Charge	$(V_{DS} = 300 \text{ Vdc}, I_{D} = 6.0 \text{ Adc}, \\ V_{GS} = 10 \text{ Vdc})$	QT	—	35.5	50	nC
		Q ₁	_	8.1		
		Q ₂	_	14.1	—	
		Q ₃	_	15.8	—	
SOURCE-DRAIN DIODE CHARAC	TERISTICS		1	1	1	1
Forward On–Voltage (1)	$(I_{S} = 6.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_{S} = 6.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_{J} = 125^{\circ}\text{C})$	V _{SD}		0.83 0.72	1.2	Vdc
Reverse Recovery Time	(I _S = 6.0 Adc, V _{GS} = 0 Vdc,	t _{rr}	—	266	—	ns
		ta	—	166	—	1 !
	dl _S /dt = 100 A/µs)	t _b	_	100	—	
Reverse Recovery Stored Charge	1	Q _{RR}	—	2.5	—	μC
INTERNAL PACKAGE INDUCTANO	: E					
Internal Drain Inductance (Measured from contact screw o (Measured from the drain lead 0.	n tab to center of die) 25″ from package to center of die)	L _D		3.5 4.5		nH
Internal Source Inductance (Measured from the source lead 0.25" from package to source bond pad)		L _S	_	7.5	—	nH

(1) Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%. (2) Switching characteristics are independent of operating junction temperature.