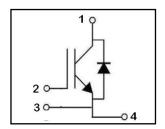


MMG75J120U

1200V 75A IGBT Module RoHS Compliant

May 2011 PRELIMINARY


FEATURES

- Ultra Low Loss
- High Ruggedness
- · High Short Circuit Capability
- Positive Temperature Coefficient
- · Electrically Isolated by DBC Ceramic
- Popular SOT-227 Package

APPLICATIONS

- Invertor
- Convertor
- Welder
- SMPS and UPS
- Induction Heating

ABSOLUTE MAXIMUM RATINGS

T_C=25°C unless otherwise specified

Symbol	Parameter	Test Conditions	Values	Unit
V _{CES}	Collector - Emitter Voltage		1200	V
V_{GES}	Gate - Emitter Voltage		±20	>
Ic	DC Collector Current	T _C =25°C	105	А
		T _C =80°C	75	А
Cpuls	Pulsed Collector Current	T _C =25°C, t _p =1ms	210	Α
		T _C =80°C, t _p =1ms	150	Α
P _{tot}	Power Dissipation		625	W
TJ	Junction Temperature Range		-40 to +150	°C
T _{STG}	Storage Temperature Range		-40 to +125	°C
V _{isol}	Insulation Test Voltage	AC, t=1min	3000	V
R _{thJC}	Junction-to-Case Thermal Resistance		0.20	K/W
Torque	Module-to-Sink	Recommended (M4)	0.7~1.1	N· m
Torque	Module Electrodes	Recommended (M4)	0.7~1.1	N· m
Weight			16.5	g

ELECTRICAL CHARACTERISTICS

T_C=25°C unless otherwise specified

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$V_{\text{GE(th)}}$	Gate - Emitter Threshold Voltage	V _{CE} =V _{GE} , I _C =3mA	5	6.2	7	V
V _{CE(sat)}	Collector - Emitter	I _C =75A, V _{GE} =15V, T _J =25°C		1.8		V
	Saturation Voltage	I _C =75A, V _{GE} =15V, T _J =125°C		2.0		V
I _{CES}	Collector Leakage Current	V _{CE} =1200V, V _{GE} =0V, T _J =25°C		0.2	0.5	mA
		V _{CE} =1200V, V _{GE} =0V, T _J =125°C		2		mA
I _{GES}	Gate Leakage Current	V_{CE} =0V, V_{GE} = ± 20 V	-100		100	nA
Q_{ge}	Gate Charge	V_{CC} =600V, I_{C} =75A, V_{GE} = \pm 15V		780		nC
C _{ies}	Input Capacitance			5.52		nF
C _{oes}	Output Capacitance	V _{CE} =25V, V _{GE} =0V, f =1MHz		0.4		nF
C _{res}	Reverse Transfer Capacitance			0.26		nF
t _{d(on)}	Turn - on Delay Time	V _{CC} =600V, I _C =75A		150		ns
t _r	Rise Time	$R_G = 15 \Omega$, $V_{GE} = \pm 15 V$		65		ns
$t_{d(off)}$	Turn - off Delay Time	T _J =25°C		440		ns
t _f	Fall Time	Inductive Load		55		ns
t _{d(on)}	Turn - on Delay Time	V _{CC} =600V, I _C =75A		160		ns
t _r	Rise Time	$R_G = 15 \Omega$, $V_{GE} = \pm 15 V$		65		ns
$t_{d(off)}$	Turn - off Delay Time	T _J =125°C		500		ns
t _f	Fall Time	Inductive Load		70		ns
E _{on}	Turn - on Switching Energy	V _{CC} =600V, I _C =75AT _J =25°C		7.45		mJ
		$R_G = 15 \Omega$ $T_J = 125 ^{\circ} C$		10.3		mJ
E _{off}	Turn - off Switching Energy	V_{GE} = $\pm 15V$ T_{J} = 25 °C		4.9		mJ
		Inductive Load T _J =125°C		7.8		mJ

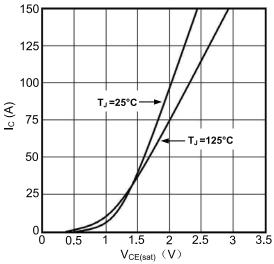


Figure 1. Typical Output characteristics

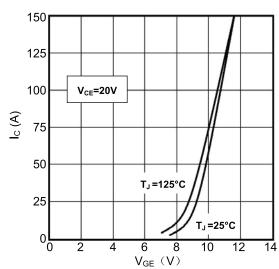


Figure 2. Typical Transfer characteristics

MMG75J120U

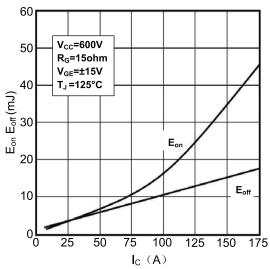


Figure 3. Switching Energy vs. Collector Current

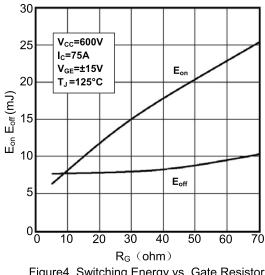


Figure 4. Switching Energy vs. Gate Resistor

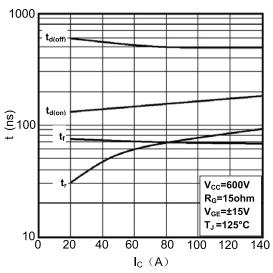


Figure 5. Switching Times vs. Collector Current

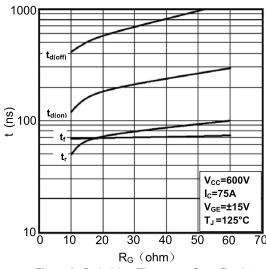


Figure 6. Switching Times vs. Gate Resistor

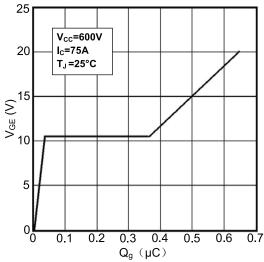


Figure 7. Gate Charge characteristics

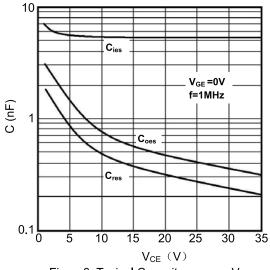


Figure 8. Typical Capacitances vs. V_{CE}

MMG75J120U

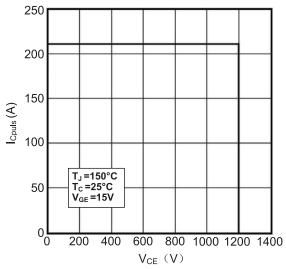


Figure 9. Reverse Biased Safe Operating Area

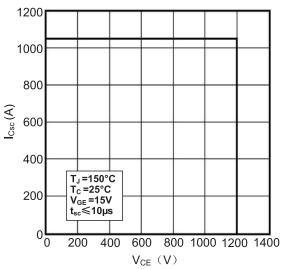


Figure 10. Short Circuit Safe Operating Area

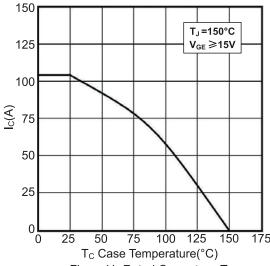


Figure 11. Rated Current vs. T_C

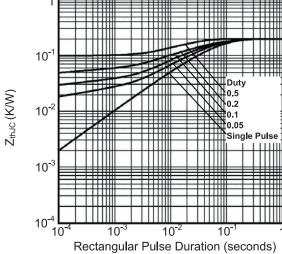
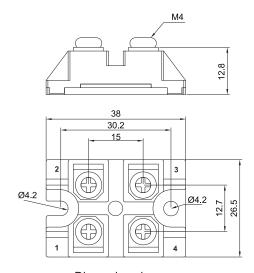



Figure 12. Transient Thermal Impedance

Dimensions in mm Figure 13. Package Outlines